scispace - formally typeset
Search or ask a question
Topic

Routing table

About: Routing table is a research topic. Over the lifetime, 16589 publications have been published within this topic receiving 336842 citations. The topic is also known as: routing information base & RIB.


Papers
More filters
Proceedings ArticleDOI
09 Oct 2006
TL;DR: A new routing algorithm is proposed that reduces the amount of heat produced in the network and uses mechanisms to adapt to topologies with low degree of connectivity and to switch to shortest path routing if a time threshold is exceeded.
Abstract: One of the major applications of sensor networks in near future will be in the area of biomedical research. Implanted biosensor nodes are already being used for various medical applications. These in-vivo sensor networks collect different biometric data and communicate the data to the base station wirelessly. These sensor networks produce heat, as the nodes have to communicate among themselves wirelessly. The rise in temperature of the nodes due to communication should not be very high. A high temperature of the in-vivo nodes for a prolonged period might damage the surrounding tissues. In this paper, we propose a new routing algorithm that reduces the amount of heat produced in the network. In the simple form, the algorithm routes packets to the coolest neighbor without inducing routing loops. In the adaptive form, the algorithm uses mechanisms to adapt to topologies with low degree of connectivity and to switch to shortest path routing if a time threshold is exceeded. The proposed algorithm performs much better in terms of reducing the amount of heat produced, delay and power consumption compared to the shortest hop routing algorithm and a previously proposed Thermal Aware Routing Algorithm (TARA).

121 citations

Proceedings Article
01 Jan 2007
TL;DR: This paper addresses the least-cost opportunistic routing (LCOR) problem: how to assign and prioritize the set of candidate relays at each node for a given destination such that the expected cost of forwarding a packet to the destination is minimized.
Abstract: In opportunistic routing, each node maintains a group of candidate relays to reach a particular destination, and transmits packets to any node in this group. If a single candidate relay receives the packet, it becomes the effective relay to forward the packet further. If no candidate receives the packet, then the current sender re-transmits. If multiple candidates receive the packet, then the link layer chooses a single receiver to be the relay. This choice could be made at random, or it could be driven by information coming from the routing layer, for example to use the best receiver as the relay. This paper addresses the least-cost opportunistic routing (LCOR) problem: how to assign and prioritize the set of candidate relays at each node for a given destination such that the expected cost of forwarding a packet to the destination is minimized. We solve this problem with a distributed algorithm that provably computes the optimal assignment of candidate relays that each node should allow to reach a particular destination. Prior proposals based on single-path routing metrics or geographic coordinates do not explicitly consider this tradeoff, and as a result make choices which are not always optimal.

120 citations

Proceedings ArticleDOI
10 Jun 2014
TL;DR: This work presents a feasible solution for improving the data packet delivery ratio in mobile UWSN by using the greedy opportunistic forwarding to route packets and to move void nodes to new depths to adjust the topology.
Abstract: Efficient protocols for data packet delivery in mobile underwater sensor networks (UWSNs) are crucial to the effective use of this new powerful technology for monitoring lakes, rivers, seas, and oceans. However, communication in UWSNs is a challenging task because of the characteristics of the acoustic channel. In this work, we present a feasible solution for improving the data packet delivery ratio in mobile UWSN. The GEographic and opportunistic routing with Depth Adjustment-based topology control for communication Recovery (GEDAR) over void regions uses the greedy opportunistic forwarding to route packets and to move void nodes to new depths to adjust the topology. Simulation results shown that GEDAR outperforms the baseline solutions in terms of packet delivery ratio, latency and energy per message.

120 citations

Patent
15 Dec 2008
TL;DR: In this article, a system and method for routing an incoming call to a subscriber-selected destination number in accordance with dynamic data concerning the subscriber provided by an address book, a calendar and a presence server is presented.
Abstract: A system and method for routing an incoming call to a subscriber-selected destination number in accordance with dynamic data concerning the subscriber provided by an address book, a calendar and a presence server. A routing system routes the incoming call in accordance with a subscriber-defined routing rule associated with the originating number of the incoming call, as determined from the address book. The routing rule may specify that the incoming call be routed to a destination number associated with the current date and time, as indicated by the calendar. The routing rule may specify, alternatively or in addition thereto, that the incoming call be routed to a destination number associated with a presence-enabled service on which the subscriber is currently active. The subscriber or caller may also be alternatively notified of the routing of the incoming call.

120 citations

Proceedings ArticleDOI
01 Jun 1992
TL;DR: Two new algorithms for deadlock- and livelock-free wormhole routing in the torus network are presented and four worm-hole routing techniques for the two-dimensional torus are experimentally evaluated using a dynamic message injection model and different tr&c patterns and message lengths.
Abstract: Luis Gravano, Gustavo D. PifarrC, Pablo E. Berman, and Jorge L. C. Sanz, Fellow, ZEEE Abstract-This paper consists of two parts. In the first part, two new algorithms for deadlock- and livelock-free wormhole routing in the torus network are presented. The first algorithm, called *-Channels, is for the n-dimensional torus network. This technique is fully-adaptive minimal, that is, all paths with a minimal number of hops from source to destination are available for routing, and needs only five virtual channels per bidirectional link, the lowest channel requirement known in the literature for fully-adaptive minimal worm-hole routing. In addition, this result also yields the lowest buffer require- ment known in the literature for packet-switched fully-adaptive minimal routing. The second algorithm, called 4-Classes, is for the bidimensional torus network. This technique is fully-adaptive minimal and requires only eight virtual channels per bidirectional link. Also, it allows for a highly parallel implementation of its associated routing node. In the second part of this paper, four worm-hole routing techniques for the two-dimensional torus are experimentally evaluate'd using a dynamic message injection model and different tr&c patterns and message lengths.

119 citations


Network Information
Related Topics (5)
Network packet
159.7K papers, 2.2M citations
92% related
Server
79.5K papers, 1.4M citations
91% related
Wireless ad hoc network
49K papers, 1.1M citations
91% related
Wireless network
122.5K papers, 2.1M citations
90% related
Key distribution in wireless sensor networks
59.2K papers, 1.2M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202331
202294
2021119
2020293
2019411
2018493