scispace - formally typeset
Search or ask a question
Topic

SAIDS Vaccines

About: SAIDS Vaccines is a research topic. Over the lifetime, 61 publications have been published within this topic receiving 4256 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Prime-boost vaccination with a mismatched SIV envelope (Env) gene, derived from simian immunodeficiency virus SIVmac239, prevents infection by SIVsmE660 intrarectally and identifies an immune correlate that may guide immunogen selection and immune monitoring for clinical efficacy trials.
Abstract: The RV144 trial demonstrated that an experimental AIDS vaccine can prevent human immunodeficiency virus type 1 (HIV-1) infection in humans. Because of its limited efficacy, further understanding of the mechanisms of preventive AIDS vaccines remains a priority, and nonhuman primate (NHP) models of lentiviral infection provide an opportunity to define immunogens, vectors, and correlates of immunity. In this study, we show that prime-boost vaccination with a mismatched SIV envelope (Env) gene, derived from simian immunodeficiency virus SIVmac239, prevents infection by SIVsmE660 intrarectally. Analysis of different gene-based prime-boost immunization regimens revealed that recombinant adenovirus type 5 (rAd5) prime followed by replication-defective lymphocytic choriomeningitis virus (rLCMV) boost elicited robust CD4 and CD8 T-cell and humoral immune responses. This vaccine protected against infection after repetitive mucosal challenge with efficacies of 82% per exposure and 62% cumulatively. No effect was seen on viremia in infected vaccinated monkeys compared to controls. Protection correlated with the presence of neutralizing antibodies to the challenge viruses tested in peripheral blood mononuclear cells. These data indicate that a vaccine expressing a mismatched Env gene alone can prevent SIV infection in NHPs and identifies an immune correlate that may guide immunogen selection and immune monitoring for clinical efficacy trials.

33 citations

Journal ArticleDOI
TL;DR: Examination of prophylactic efficacies of several multivalent replication-incompetent adenovirus serotype 5 (Ad5) vaccines in rhesus macaques found expansion of the antigen breadth resulted in more favorable virological outcomes.
Abstract: The prophylactic efficacies of several multivalent replication-incompetent adenovirus serotype 5 (Ad5) vaccines were examined in rhesus macaques using an intrarectal high-dose simian immunodeficiency virus SIVmac239 challenge model. Cohorts of Mamu-A*01+/B*17− Indian rhesus macaques were immunized with one of several combinations of Ad5 vectors expressing Gag, Pol, Nef, and Env gp140; for comparison, a Mamu-A*01+ cohort was immunized using the Ad5 vector alone. There was no sign of immunological interference between antigens in the immunized animals. In general, expansion of the antigen breadth resulted in more favorable virological outcomes. In particular, the order of efficacy trended as follows: Gag/Pol/Nef/Env ≈ Gag/Pol > Gag ≈ Gag/Pol/Nef > Nef. However, the precision in ranking the vaccines based on the study results may be limited by the cohort size, and as such, may warrant additional testing. The implications of these results in light of the recent discouraging results of the phase IIb study of the trivalent Ad5 HIV-1 vaccine are discussed.

31 citations

Journal ArticleDOI
TL;DR: Optimization of vaccine delivery methods for DNA or live viral vector‐based vaccines, elucidating the immune responses of individuals who remain resistant to HIV‐1 infections and also understanding the core immune responses mediating protection against simian immunodeficiency viruses (SIV) and HIV‐ 1 in animal models following vaccination, are key aspects to be regarded for designing more effective HIV-1 vaccines in the future.
Abstract: Numerous human immunodeficiency virus (HIV)-1 vaccines have been developed over the last three decades, but to date an effective HIV-1 vaccine that can be used for prophylactic or therapeutic purposes in humans has not been identified. The failures and limited successes of HIV-1 vaccines have highlighted the gaps in our knowledge with regard to fundamental immunity against HIV-1 and have provided insights for vaccine strategies that may be implemented for designing more effective HIV-1 vaccines in the future. Recent studies have shown that robust mucosal immunity, high avidity and polyfunctional T cells, and broadly neutralizing antibodies are important factors governing the induction of protective immunity against HIV-1. Furthermore, optimization of vaccine delivery methods for DNA or live viral vector-based vaccines, elucidating the immune responses of individuals who remain resistant to HIV-1 infections and also understanding the core immune responses mediating protection against simian immunodeficiency viruses (SIV) and HIV-1 in animal models following vaccination, are key aspects to be regarded for designing more effective HIV-1 vaccines in the future.

30 citations

Journal ArticleDOI
TL;DR: Three of the four monkeys infected for greater than 600 days with a chimeric virus composed of SIVmac 239 expressing the human immunodeficiency virus type 1 HXBc2 env, tat, and rev genes were challenged intravenously with 100 animal infectious doses of the J5 clone of Sivmac 32H, an isolate derived by in vivo passage of Siva 251.
Abstract: Prior infection with a nef-deleted simian immunodeficiency virus (SIV) protects macaques not only against a homologous pathogenic SIV challenge but also against challenge with a chimeric SIV expressing a human immunodeficiency virus type 1 env gene (SHIV). Since this SHIV is itself nonpathogenic, we sought to explore the use of a nonpathogenic SHIV as a live, attenuated AIDS virus vaccine. Four cynomolgus monkeys infected for greater than 600 days with a chimeric virus composed of SIVmac 239 expressing the human immunodeficiency virus type 1 HXBc2 env, tat, and rev genes were challenged intravenously with 100 animal infectious doses of the J5 clone of SIVmac 32H, an isolate derived by in vivo passage of SIVmac 251. Three of the four monkeys became infected with SIVmac. This observation underlines the difficulty, even with a live virus vaccine, in protecting against an AIDS virus infection.

28 citations

Journal ArticleDOI
TL;DR: It is found that freshly isolated peripheral blood mononuclear cells from adenovirus serotype 5 (Ad5)-seropositive primates can be efficiently infected with Ad5 in vitro and a novel strategy based on adenviral vector-infected PBMC (AVIP) immunization was explored to circumvent antivector immunity.
Abstract: Adenovirus has been extensively exploited as a vector platform for delivering vaccines. However, preexisting antiadenovirus immunity is the major stumbling block for application of adenovirus-vectored vaccines. In this study, we found that freshly isolated peripheral blood mononuclear cells (PBMCs), mostly CD14(+) cells, from adenovirus serotype 5 (Ad5)-seropositive primates (humans and rhesus macaques) can be efficiently infected with Ad5 in vitro. On the basis of this observation, a novel strategy based on adenoviral vector-infected PBMC (AVIP) immunization was explored to circumvent antivector immunity. Autologous infusion of Ad5-SIVgag-infected PBMCs elicited a strong Gag-specific cellular immune response but induced weaker Ad5-neutralizing antibody (NAb) in Ad5-seronegative macaques than in macaques intramuscularly injected with Ad5-SIVgag. Moreover, Ad5-seropositive macaques receiving multiple AVIP immunizations with Ad5-SIVenv, Ad5-SIVgag, and Ad5-SIVpol vaccines elicited escalated Env-, Gag-, and Pol-specific immune responses after each immunization that were significantly greater than those in macaques intramuscularly injected with these Ad5-SIV vaccines. After challenged intravenously with a highly pathogenic SIVmac239 virus, macaques receiving AVIP immunization demonstrated a significant reduction in viral load at both the peak time and set-point period compared with macaques without Ad5-SIV vaccines. Our study warranted further research and development of the AVIP immunization as a platform for repeated applications of adenovirus-vectored vaccines.

22 citations

Network Information
Related Topics (5)
Epitope
58.7K papers, 2.1M citations
81% related
Virus
136.9K papers, 5.2M citations
80% related
T cell
109.5K papers, 5.5M citations
78% related
CD8
44.4K papers, 2.2M citations
77% related
Antibody
113.9K papers, 4.1M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20171
20151
20143
20133
20125
20113