scispace - formally typeset
Search or ask a question
Topic

Salt-and-pepper noise

About: Salt-and-pepper noise is a research topic. Over the lifetime, 4572 publications have been published within this topic receiving 75078 citations. The topic is also known as: Salt & pepper noise & salt-and-pepper noise.


Papers
More filters
Journal ArticleDOI
TL;DR: A simple preprocessing procedure is introduced, which modifies the acquired radio-frequency images, so that the noise in the log-transformation domain becomes very close in its behavior to a white Gaussian noise, which allows filtering methods based on assuming the noise to be white and Gaussian, to perform in nearly optimal conditions.
Abstract: Speckle noise is an inherent property of medical ultrasound imaging, and it generally tends to reduce the image resolution and contrast, thereby reducing the diagnostic value of this imaging modality. As a result, speckle noise reduction is an important prerequisite, whenever ultrasound imaging is used for tissue characterization. Among the many methods that have been proposed to perform this task, there exists a class of approaches that use a multiplicative model of speckled image formation and take advantage of the logarithmical transformation in order to convert multiplicative speckle noise into additive noise. The common assumption made in a dominant number of such studies is that the samples of the additive noise are mutually uncorrelated and obey a Gaussian distribution. The present study shows conceptually and experimentally that this assumption is oversimplified and unnatural. Moreover, it may lead to inadequate performance of the speckle reduction methods. The study introduces a simple preprocessing procedure, which modifies the acquired radio-frequency images (without affecting the anatomical information they contain), so that the noise in the log-transformation domain becomes very close in its behavior to a white Gaussian noise. As a result, the preprocessing allows filtering methods based on assuming the noise to be white and Gaussian, to perform in nearly optimal conditions. The study evaluates performances of three different, nonlinear filters - wavelet denoising, total variation filtering, and anisotropic diffusion - and demonstrates that, in all these cases, the proposed preprocessing significantly improves the quality of resultant images. Our numerical tests include a series of computer-simulated and in vivo experiments.

381 citations

Journal ArticleDOI
TL;DR: A patch-based noise level estimation algorithm that selects low-rank patches without high frequency components from a single noisy image and estimates the noise level based on the gradients of the patches and their statistics is proposed.
Abstract: Noise level is an important parameter to many image processing applications. For example, the performance of an image denoising algorithm can be much degraded due to the poor noise level estimation. Most existing denoising algorithms simply assume the noise level is known that largely prevents them from practical use. Moreover, even with the given true noise level, these denoising algorithms still cannot achieve the best performance, especially for scenes with rich texture. In this paper, we propose a patch-based noise level estimation algorithm and suggest that the noise level parameter should be tuned according to the scene complexity. Our approach includes the process of selecting low-rank patches without high frequency components from a single noisy image. The selection is based on the gradients of the patches and their statistics. Then, the noise level is estimated from the selected patches using principal component analysis. Because the true noise level does not always provide the best performance for nonblind denoising algorithms, we further tune the noise level parameter for nonblind denoising. Experiments demonstrate that both the accuracy and stability are superior to the state of the art noise level estimation algorithm for various scenes and noise levels.

381 citations

Journal ArticleDOI
TL;DR: In this article, a generalized framework of median based switching schemes, called multi-state median (MSM) filter, is proposed by using a simple thresholding logic, the output of the MSM filter is adaptively switched among those of a group of center weighted median (CWM) filters with different center weights.
Abstract: This brief proposes a generalized framework of median based switching schemes, called multi-state median (MSM) filter. By using a simple thresholding logic, the output of the MSM filter is adaptively switched among those of a group of center weighted median (CWM) filters that have different center weights. As a result, the MSM filter is equivalent to an adaptive CWM filter with a space varying center weight which is dependent on local signal statistics. The efficacy of the proposed filter has been evaluated by extensive simulations.

380 citations

Proceedings ArticleDOI
17 Jun 2006
TL;DR: The utility of this noise estimation for two algorithms: edge detection and feature preserving smoothing through bilateral filtering for a variety of different noise levels is illustrated and good results are obtained for both these algorithms with no user-specified inputs.
Abstract: In order to work well, many computer vision algorithms require that their parameters be adjusted according to the image noise level, making it an important quantity to estimate. We show how to estimate an upper bound on the noise level from a single image based on a piecewise smooth image prior model and measured CCD camera response functions. We also learn the space of noise level functions how noise level changes with respect to brightness and use Bayesian MAP inference to infer the noise level function from a single image. We illustrate the utility of this noise estimation for two algorithms: edge detection and featurepreserving smoothing through bilateral filtering. For a variety of different noise levels, we obtain good results for both these algorithms with no user-specified inputs.

368 citations

Proceedings ArticleDOI
09 Jul 2010
TL;DR: A method which combines Sobel edge detection operator and soft-threshold wavelet de-noising to do edge detection on images which include White Gaussian noises, which has a more obvious effect on edge detection.
Abstract: This paper proposes a method which combines Sobel edge detection operator and soft-threshold wavelet de-noising to do edge detection on images which include White Gaussian noises. In recent years, a lot of edge detection methods are proposed. The commonly used methods which combine mean de-noising and Sobel operator or median filtering and Sobel operator can not remove salt and pepper noise very well. In this paper, we firstly use soft-threshold wavelet to remove noise, then use Sobel edge detection operator to do edge detection on the image. This method is mainly used on the images which includes White Gaussian noises. Through the pictures obtained by the experiment, we can see very clearly that, compared to the traditional edge detection methods, the method proposed in this paper has a more obvious effect on edge detection.

363 citations


Network Information
Related Topics (5)
Feature extraction
111.8K papers, 2.1M citations
87% related
Image segmentation
79.6K papers, 1.8M citations
85% related
Image processing
229.9K papers, 3.5M citations
85% related
Feature (computer vision)
128.2K papers, 1.7M citations
83% related
Support vector machine
73.6K papers, 1.7M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202342
2022109
202143
202078
201981
201897