scispace - formally typeset
Search or ask a question
Topic

Salt bridge (protein and supramolecular)

About: Salt bridge (protein and supramolecular) is a research topic. Over the lifetime, 276 publications have been published within this topic receiving 12675 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This work develops an approach to detect noncovalent interactions in real space, based on the electron density and its derivatives, which provides a rich representation of van der Waals interactions, hydrogen bonds, and steric repulsion in small molecules, molecular complexes, and solids.
Abstract: Molecular structure does not easily identify the intricate noncovalent interactions that govern many areas of biology and chemistry, including design of new materials and drugs. We develop an approach to detect noncovalent interactions in real space, based on the electron density and its derivatives. Our approach reveals the underlying chemistry that compliments the covalent structure. It provides a rich representation of van der Waals interactions, hydrogen bonds, and steric repulsion in small molecules, molecular complexes, and solids. Most importantly, the method, requiring only knowledge of the atomic coordinates, is efficient and applicable to large systems, such as proteins or DNA. Across these applications, a view of nonbonded interactions emerges as continuous surfaces rather than close contacts between atom pairs, offering rich insight into the design of new and improved ligands.

5,731 citations

Journal ArticleDOI
07 Feb 1995-Science
TL;DR: The model was used to identify correctly both the binding orientation and the contact and noncontact residues of a peptide derived from the nucleotide exchange factor Sos in association with the amino-terminal SH3 domain of the adaptor protein Grb2.
Abstract: Solution structures of two Src homology 3 (SH3) domain-ligand complexes have been determined by nuclear magnetic resonance. Each complex consists of the SH3 domain and a nine-residue proline-rich peptide selected from a large library of ligands prepared by combinatorial synthesis. The bound ligands adopt a left-handed polyproline type II (PPII) helix, although the amino to carboxyl directionalities of their helices are opposite. The peptide orientation is determined by a salt bridge formed by the terminal arginine residues of the ligands and the conserved aspartate-99 of the SH3 domain. Residues at positions 3, 4, 6, and 7 of both peptides also intercalate into the ligand-binding site; however, the respective proline and nonproline residues show exchanged binding positions in the two complexes. These structural results led to a model for the interactions of SH3 domains with proline-rich peptides that can be used to predict critical residues in complexes of unknown structure. The model was used to identify correctly both the binding orientation and the contact and noncontact residues of a peptide derived from the nucleotide exchange factor Sos in association with the amino-terminal SH3 domain of the adaptor protein Grb2.

813 citations

Journal ArticleDOI
TL;DR: A mechanism of acid denaturation in which the unfolded state is progressively stabilized by protonation of its acid residues as pH is lowered below pH 4.5 is suggested.
Abstract: The energetics of a salt bridge formed between the side chains of aspartic acid 70 (Asp70) and histidine 31 (His31) of T4 lysozyme have been examined by nuclear magnetic resonance techniques. The pKa values of the residues in the native state are perturbed from their values in the unfolded protein such that His31 has a pKa value of 9.1 in the native state and 6.8 in the unfolded state at 10 degrees C in moderate salt. Similarly, the aspartate pKa is shifted to a value of about 0.5 in the native state from its value of 3.5-4.0 in the unfolded state. These shifts in pKa show that the salt bridge is stabilized 3-5 kcal/mol. This implies that the salt bridge stabilizes the native state by 3-5 kcal/mol as compared to the unfolded state. This is reflected in the thermodynamic stability of mutants of the protein in which Asp70, His31, or both are replaced by asparagine. These observations and consideration of the thermodynamic coupling of protonation state to folding of proteins suggest a mechanism of acid denaturation in which the unfolded state is progressively stabilized by protonation of its acid residues as pH is lowered below pH 4. The unfolded state is stabilized only if acidic groups in the folded state have lower pKa values than in the unfolded state. When the pH is sufficiently low, the acid groups of both the native and unfolded states are fully protonated, and the apparent unfolding equilibrium constant becomes pH independent. Similar arguments apply to base-induced unfolding.(ABSTRACT TRUNCATED AT 250 WORDS)

503 citations

Journal ArticleDOI
29 Mar 2002-Science
TL;DR: The aim of these syntheses is not only the creation of a particular structure, but also the introduction of specific chemical functions in these supramolecular aggregates.
Abstract: Weak, noncovalent interactions between molecules control many biological functions. In chemistry, noncovalent interactions are now exploited for the synthesis in solution of large supramolecular aggregates. The aim of these syntheses is not only the creation of a particular structure, but also the introduction of specific chemical functions in these supramolecules.

439 citations

Journal ArticleDOI
TL;DR: This work estimated the interaction energy between two charged residues, Asp-12 and Arg-16, in an alpha-helix on the surface of a barnase mutant by invoking a double-mutant cycle involving wild-type enzyme (Asp- 12, Thr-16), the single mutants Thr----Arg-16 and Asp----Ala-12,
Abstract: Coulombic interactions between charges on the surface of proteins contribute to stability. It is difficult, however, to estimate their importance by protein engineering methods because mutation of one residue in an ion pair alters the energetics of many interactions in addition to the coulombic energy between the two components. We have estimated the interaction energy between two charged residues, Asp-12 and Arg-16, in an alpha-helix on the surface of a barnase mutant by invoking a double-mutant cycle involving wild-type enzyme (Asp-12, Thr-16), the single mutants Thr----Arg-16 and Asp----Ala-12, and the double mutant Asp----Ala-12, Thr----Arg-16. The changes in free energy of unfolding of the single mutants are not additive because of the coulombic interaction energy. Additivity is restored at high concentrations of salt that shield electrostatic interactions. The geometry of the ion pair in the mutant was assumed to be the same as that in the highly homologous ribonuclease from Bacillus intermedius, binase, which has Asp-12 and Arg-16 in the native enzyme. The ion pair does not form a hydrogen-bonded salt bridge, but the charges are separated by 5-6 A. The mutant barnase containing the ion pair Asp-12/Arg-16 is more stable than wild type by 0.5 kcal/mol, but only a part of the increased stability is attributable to the electrostatic interaction. We present a formal analysis of how double-mutant cycles can be used to measure the energetics of pairwise interactions.

331 citations

Network Information
Related Topics (5)
Protein structure
42.3K papers, 3M citations
82% related
Protein folding
16.9K papers, 1M citations
82% related
Lipid bilayer
24.7K papers, 1M citations
79% related
Active site
28.6K papers, 1.1M citations
79% related
Base pair
17.5K papers, 1M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20217
20208
20198
201811
20175
20167