scispace - formally typeset
Search or ask a question
Topic

Sandwich panel

About: Sandwich panel is a research topic. Over the lifetime, 4665 publications have been published within this topic receiving 49812 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a multi-layer piezoelectric actuator (MPA) was used for active vibration control of a cantilever honeycomb sandwich panel (CHSP).

20 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used a FRP sandwich panel instrumented with a network of 16 fibre optic Bragg strain sensors, together with conventional electrical strain gauges for control and verification.
Abstract: Drop test experiments have been performed with a FRP sandwich panel instrumented with a network of 16 fibre optic (FO) Bragg strain sensors, together with conventional electrical strain gauges for control and verification. The drop tests simulate slamming loads on the wet deck of a surface effect ship (SES). The objectives were to show the possibility of using a network of FO sensors to monitor strain during a slamming impact, and to test out a technique for signal processing. The strain measurements provided both peak strain data and served as a base for frequency analysis. The results showed that the FO strain sensors performed satisfactorily and were in general agreement with the conventional strain gauges used. The FO interrogation system was, however, not designed with sufficiently large dynamic range for the most extreme drop sequences. The peak strain in the panel was found to increase almost proportionally with the drop velocity, or drop height, and the wet fundamental frequency increased with increasing drop angle. Furthermore, the frequency decreased with increasing drop velocity.

20 citations

Journal ArticleDOI
TL;DR: In this article, the soft body impact performance of composite sandwich panels with corrugated and tubular core reinforcements was investigated for high velocity impact with soft gelatine projectile as used in bird strike tests.

20 citations

Journal ArticleDOI
TL;DR: In this article, the performance of double-skin composite sandwich panels made of steel sheets and aluminium foam to be used as the deck in civil structures is evaluated. But the application of these materials are mainly limited to aeronautic and mechanical engineering.
Abstract: Metal foams are engineered materials with attractive mechanical properties such as lightness, energy dissipation capacity, high resistance and stiffness. To date, the applications of these materials are mainly limited to aeronautic and mechanical engineering. However, their features can provide significant advantages also for the development of new products for structures and infrastructures in the field of civil engineering. This consideration has motivated the study described in this paper, which is mainly devoted to assessing the performance of double-skin composite sandwich panels made of steel sheets and aluminium foam to be used as the deck in civil structures. To this aim, as the first step of ongoing research activity, both experimental and finite element (FE) simulations are carried out verifying the applicability of the proposed type of sandwich panel. Both tests on material specimens and three-point bending tests on the double-skin composite sandwich panels are performed, and the main results are discussed. FE analyses are carried out enlarging the range of investigated and monitored parameters assessing their influence on the bending and shear response of the panels. The outcomes of the study show the effectiveness of the proposed type of sandwich panel and allow selecting the most effective type of adhesive to bond the steel plates to the aluminium foam core. The obtained results are complemented with simple design equations that allow satisfactorily predicting both stiffness and strength of the sandwich panels.

20 citations

Journal ArticleDOI
TL;DR: It is shown that the proposed method has sufficient accuracy and requires less computational effort, providing a theoretical basis for the utilization of the trapezoidal corrugated-core sandwich panel in aircraft designing.

20 citations


Network Information
Related Topics (5)
Fracture mechanics
58.3K papers, 1.3M citations
84% related
Finite element method
178.6K papers, 3M citations
83% related
Ultimate tensile strength
129.2K papers, 2.1M citations
81% related
Compressive strength
64.4K papers, 1M citations
81% related
Fracture toughness
39.6K papers, 854.3K citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202384
2022217
2021244
2020280
2019264
2018252