scispace - formally typeset
Search or ask a question
Topic

Sandwich panel

About: Sandwich panel is a research topic. Over the lifetime, 4665 publications have been published within this topic receiving 49812 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, an experimental and analytical investigation is carried out to examine the in-plane compressive response of pyramidal truss core sandwich columns, and failure maps are constructed for sandwich columns made from an elastic ideally-plastic material and AISI 304 stainless steel which has a strongly strain hardening response.

102 citations

Journal ArticleDOI
Shu Yang1, Chang Qi1, Dong Wang1, Renjing Gao1, Hai-Tao Hu1, Jian Shu1 
TL;DR: In this article, an innovative auxetic-cored sandwich panel (AXP) is proposed and its perforation resistant performance under high-velocity projectile impact was numerically analyzed using the validated finite element simulation techniques.
Abstract: An innovative auxetic-cored sandwich panel (AXP) is proposed. Its perforation resistant performance under high-velocity projectile impact was numerically analyzed using the validated finite element simulation techniques and compared with that of the aluminum foam-cored sandwich panel (AFP) of identical dimensions and weight. It has been found that the AXP is far superior to the AFP in ballistic resistance because of the material concentration at the impacted area due to the negative Poisson's ratio (NPR) effect. A parametric study was carried out to investigate the effects of several key parameters, including impact velocity, face and core thicknesses, and core density, on the ballistic resistance of the AXP and AFP. The results show that the ballistic limit and perforation energy of the AXP is greatly affected by these parameters. Meanwhile, the advantages of AXP over AFP being used as ballistic resistant structures are highlighted. The primary outcome of this research is new information on the developme...

102 citations

Journal ArticleDOI
TL;DR: The authors reviewed the most significant works in literature about the acoustic behaviour of sandwich panels, starting from the first examples of multi-layered structures, comprising a series of different dif...
Abstract: This paper reviews the most significant works in literature about the acoustic behaviour of sandwich panels, starting from the first examples of multi-layered structures, comprising a series of dif...

101 citations

Journal ArticleDOI
TL;DR: In this paper, a model 6061-T6 aluminum alloy system fabricated by friction stir weld joining extruded sandwich panels with a triangular corrugated core was used to investigate the dynamic deformation and fracture processes.
Abstract: Light metal sandwich panel structures with cellular cores have attracted interest for multifunctional applications which exploit their high bend strength and impact energy absorption. This concept has been explored here using a model 6061-T6 aluminum alloy system fabricated by friction stir weld joining extruded sandwich panels with a triangular corrugated core. Micro-hardness and miniature tensile coupon testing revealed that friction stir welding reduced the strength and ductility in the welds and a narrow heat affected zone on either side of the weld by approximately 30%. Square, edge clamped sandwich panels and solid plates of equal mass per unit area were subjected to localized impulsive loading by the impact of explosively accelerated, water saturated, sand shells. The hydrodynamic load and impulse applied by the sand were gradually increased by reducing the stand-off distance between the test charge and panel surfaces. The sandwich panels suffered global bending and stretching, and localized core crushing. As the pressure applied by the sand increased, face sheet fracture by a combination of tensile stretching and shear-off occurred first at the two clamped edges of the panels that were parallel with the corrugation and weld direction. The plane of these fractures always lay within the heat affected zone of the longitudinal welds. For the most intensively loaded panels additional cracks occurred at the other clamped boundaries and in the center of the panel. To investigate the dynamic deformation and fracture processes, a particle-based method has been used to simulate the impulsive loading of the panels. This has been combined with a finite element analysis utilizing a modified Johnson–Cook constitutive relation and a Cockcroft– Latham fracture criterion that accounted for local variation in material properties. The fully coupled simulation approach enabled the relationships between the soilexplosive test charge design, panel geometry, spatially varying material properties and the panel’s deformation and dynamic failure responses to be explored. This comprehensive study reveals the existence of a strong instability in the loading that results from changes in sand particle reflection during dynamic evolution of the panel’s surface topology. Significant fluid–structure interaction effects are also discovered at the sample sides and corners due to changes of the sand reflection angle by the edge clamping system.

101 citations

Journal ArticleDOI
TL;DR: In this article, a carbon fiber reinforced composite (CFRC) lattice truss sandwich panel (LTSP) was designed and fabricated to get a strong, stiff and weight-efficient structure.

101 citations


Network Information
Related Topics (5)
Fracture mechanics
58.3K papers, 1.3M citations
84% related
Finite element method
178.6K papers, 3M citations
83% related
Ultimate tensile strength
129.2K papers, 2.1M citations
81% related
Compressive strength
64.4K papers, 1M citations
81% related
Fracture toughness
39.6K papers, 854.3K citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202384
2022217
2021244
2020280
2019264
2018252