scispace - formally typeset
Search or ask a question
Topic

Sandwich panel

About: Sandwich panel is a research topic. Over the lifetime, 4665 publications have been published within this topic receiving 49812 citations.


Papers
More filters
Journal ArticleDOI
Soon Ho Yoon1, Dai Gil Lee1
TL;DR: In this article, a light-weight hot pad system for curing large area adhesive films for the secondary barrier of cryogenic cargo containments of Liquefied Natural Gas (LNG) has been developed with a composite sandwich panel.

19 citations

Journal ArticleDOI
TL;DR: In this paper, the mechanical resistance properties of a sandwich panel comprised of fiber reinforced plastic face sheets and a polyol-isocyanate foam core were investigated for use as a structural building component or cladding system.

19 citations

Journal ArticleDOI
TL;DR: In this paper, a robust numerical model is developed to predict the full load-deflection and strain responses of the panel based on equilibrium and strain compatibility and accounts for the excessive shear deformation and material nonlinearity of the core.
Abstract: This paper studies the flexural performance of sandwich panels composed of a soft polyurethane foam core and glass-fiber-reinforced polymer (GFRP) skins. A robust numerical model is developed to predict the full load-deflection and strain responses of the panel. It is based on equilibrium and strain compatibility and accounts for the excessive shear deformation and material nonlinearity of the core. It also accounts for geometric nonlinearity in the form of localized deflection of the loaded skin using the principals of beam-on-elastic foundation and the change in core thickness due to its softness. The model incorporates various failure criteria, namely core shear failure, core flexural tension or compression failure, compression skin crushing or wrinkling, or tensile rupture of skin. The model has the advantage of being able to isolate quantitatively the individual contributions of flexure, shear, and localized skin deformations, to overall deflection. A parametric study is performed to examine ...

19 citations

Journal ArticleDOI
TL;DR: In this paper, an analytical and finite element analysis of ten multifunctional sandwich structures is presented, and a parameter optimization of the ten sandwich panels is carried out to optimize their frequency to density ratio.
Abstract: For next generation microsatellites and nanosatellites, new design approaches will be required to significantly increase their payload to mass fraction. One proposed technology is the multifunctional design concept that incorporates spacecraft subsystems into the load carrying structure. The focus of the research is the multifunctional power structure which replaces conventional battery systems in a spacecraft. An analytical and finite element analysis of ten multifunctional sandwich structures is presented. The out-of-plane material properties are discussed and a parameter optimization of the ten sandwich panels is carried out to optimize their frequency to density ratio. The best configuration for an optimized multifunctional power structure is then identified from the analytical and finite element investigation. The optimized design provides a similar predicted dynamic response as a conventional honeycomb sandwich panel, and can be considered a serious alternative for future spacecraft. Copyright © 2006 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.

19 citations

Journal ArticleDOI
TL;DR: In this article, an analytical determination of the ultimate strength of a typical GRP/PVC sandwich beam has been performed to predict the ultimate load for a simple supported sandwich beam.
Abstract: An analytical determination of the ultimate strength of a typical GRP/PVC sandwich beam has been performed. These beams represent common building practise in marine applications. Equations describing the behaviour of a sandwich panel under beam loading and various failure modes have been developed. The method has been applied to predict the ultimate load for a simple supported sandwich beam. The critical loads have been compared with those from the experimental investigation of a typical bulkhead-to-hull GRP/PVC sandwich T-joint under pull out forces.

19 citations


Network Information
Related Topics (5)
Fracture mechanics
58.3K papers, 1.3M citations
84% related
Finite element method
178.6K papers, 3M citations
83% related
Ultimate tensile strength
129.2K papers, 2.1M citations
81% related
Compressive strength
64.4K papers, 1M citations
81% related
Fracture toughness
39.6K papers, 854.3K citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202384
2022217
2021244
2020280
2019264
2018252