Topic
Satellite navigation
About: Satellite navigation is a research topic. Over the lifetime, 10113 publications have been published within this topic receiving 103612 citations. The topic is also known as: sat nav & satellite navigation.
Papers published on a yearly basis
Papers
More filters
[...]
TL;DR: This work determines precise GPS satellite positions and clock corrections from a globally distributed network of GPS receivers, and analysis of data from hundreds to thousands of sites every day with 40-Mflop computers yields results comparable in quality to the simultaneous analysis of all data.
Abstract: Networks of dozens to hundreds of permanently operating precision Global Positioning System (GPS) receivers are emerging at spatial scales that range from 10(exp 0) to 10(exp 3) km. To keep the computational burden associated with the analysis of such data economically feasible, one approach is to first determine precise GPS satellite positions and clock corrections from a globally distributed network of GPS receivers. Their, data from the local network are analyzed by estimating receiver- specific parameters with receiver-specific data satellite parameters are held fixed at their values determined in the global solution. This "precise point positioning" allows analysis of data from hundreds to thousands of sites every (lay with 40-Mflop computers, with results comparable in quality to the simultaneous analysis of all data. The reference frames for the global and network solutions can be free of distortion imposed by erroneous fiducial constraints on any sites.
2,590 citations
[...]
TL;DR: The technique of map matching is used to match an aircraft's elevation profile to a digital elevation map and a car's horizontal driven path to a street map and it is shown that the accuracy is comparable with satellite navigation but with higher integrity.
Abstract: A framework for positioning, navigation, and tracking problems using particle filters (sequential Monte Carlo methods) is developed. It consists of a class of motion models and a general nonlinear measurement equation in position. A general algorithm is presented, which is parsimonious with the particle dimension. It is based on marginalization, enabling a Kalman filter to estimate all position derivatives, and the particle filter becomes low dimensional. This is of utmost importance for high-performance real-time applications. Automotive and airborne applications illustrate numerically the advantage over classical Kalman filter-based algorithms. Here, the use of nonlinear models and non-Gaussian noise is the main explanation for the improvement in accuracy. More specifically, we describe how the technique of map matching is used to match an aircraft's elevation profile to a digital elevation map and a car's horizontal driven path to a street map. In both cases, real-time implementations are available, and tests have shown that the accuracy in both cases is comparable with satellite navigation (as GPS) but with higher integrity. Based on simulations, we also argue how the particle filter can be used for positioning based on cellular phone measurements, for integrated navigation in aircraft, and for target tracking in aircraft and cars. Finally, the particle filter enables a promising solution to the combined task of navigation and tracking, with possible application to airborne hunting and collision avoidance systems in cars.
1,690 citations
Book•
[...]
29 Dec 2000
TL;DR: The authors explore the various subtleties, common failures, and inherent limitations of the theory as it applies to real-world situations, and provide numerous detailed application examples and practice problems, including GNSS-aided INS, modeling of gyros and accelerometers, and SBAS and GBAS.
Abstract: An updated guide to GNSS and INS, and solutions to real-world GPS/INS problems with Kalman filtering Written by recognized authorities in the field, this second edition of a landmark work provides engineers, computer scientists, and others with a working familiarity with the theory and contemporary applications of Global Navigation Satellite Systems (GNSS), Inertial Navigational Systems (INS), and Kalman filters. Throughout, the focus is on solving real-world problems, with an emphasis on the effective use of state-of-the-art integration techniques for those systems, especially the application of Kalman filtering. To that end, the authors explore the various subtleties, common failures, and inherent limitations of the theory as it applies to real-world situations, and provide numerous detailed application examples and practice problems, including GNSS-aided INS, modeling of gyros and accelerometers, and SBAS and GBAS. Drawing upon their many years of experience with GNSS, INS, and the Kalman filter, the authors present numerous design and implementation techniques not found in other professional references. This Second Edition has been updated to include: GNSS signal integrity with SBAS Mitigation of multipath, including results Ionospheric delay estimation with Kalman filters New MATLAB programs for satellite position determination using almanac and ephemeris data and ionospheric delay calculations from single and dual frequency data New algorithms for GEO with L1 /L5 frequencies and clock steering Implementation of mechanization equations in numerically stable algorithms To enhance comprehension of the subjects covered, the authors have included software in MATLAB, demonstrating the working of the GNSS, INS, and filter algorithms. In addition to showing the Kalman filter in action, the software also demonstrates various practical aspects of finite word length arithmetic and the need for alternative algorithms to preserve result accuracy.
1,650 citations
Book•
[...]
TL;DR: Elements of Satellite Surveying The Global Positioning System Adjustment Computations Least Squares Adjustment Examples Links to Physical Observations The Three-Dimensional Geodetic Model GPS Observables Propagation Media, Multipath, and Phase Center Processing GPS Carrier Phases Network Adjustments Ellipsoidal and Conformal Mapping Models Useful Transformations Datums, Standards, and Specifications Appendices References Abbreviations for Frequently Used References Indexes as discussed by the authors.
Abstract: Elements of Satellite Surveying The Global Positioning System Adjustment Computations Least-Squares Adjustment Examples Links to Physical Observations The Three-Dimensional Geodetic Model GPS Observables Propagation Media, Multipath, and Phase Center Processing GPS Carrier Phases Network Adjustments Ellipsoidal and Conformal Mapping Models Useful Transformations Datums, Standards, and Specifications Appendices References Abbreviations for Frequently Used References Indexes.
1,569 citations
Book•
[...]
31 Dec 2007
TL;DR: In this paper, the authors present a single-source reference for navigation systems engineering, providing both an introduction to overall systems operation and an in-depth treatment of architecture, design, and component integration.
Abstract: Navigation systems engineering is a red-hot area. More and more technical professionals are entering the field and looking for practical, up-to-date engineering know-how. This single-source reference answers the call, providing both an introduction to overall systems operation and an in-depth treatment of architecture, design, and component integration. This book explains how satellite, on-board, and other navigation technologies operate, and it gives practitioners insight into performance issues such as processing chains and error sources. Providing solutions to systems designers and engineers, the book describes and compares different integration architectures, and explains how to diagnose errors. Moreover, this hands-on book includes appendices filled with terminology and equations for quick referencing.
1,351 citations