scispace - formally typeset
Search or ask a question
Topic

Saturable absorption

About: Saturable absorption is a research topic. Over the lifetime, 10222 publications have been published within this topic receiving 185893 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A new low-loss fast intracavity semiconductor Fabry-Perot saturable absorber operated at anti-resonance both to start and sustain stable mode locking of a cw-pumped Nd:YLF laser is introduced.
Abstract: We introduce a new low-loss fast intracavity semiconductor Fabry-Perot saturable absorber operated at anti-resonance both to start and sustain stable mode locking of a cw-pumped Nd:YLF laser. We achieved a 3.3-ps pulse duration at a 220-MHz repetition rate. The average output power was 700 mW with 2 W of cw pump power from a Ti:sapphire laser. At pump powers of less than 1.6 W the laser self-Q switches and produces 4-ps pulses within a 1.4-micros Q-switched pulse at an approximately 150-kHz repetition rate determined by the relaxation oscillation of the Nd:YLF laser. Both modes of operation are stable. In terms of coupled-cavity mode locking, the intra-cavity antiresonant Fabry-Perot saturable absorber corresponds to monolithic resonant passive mode locking.

674 citations

Journal ArticleDOI
TL;DR: The operation of a broadband MoS2 saturable absorber is demonstrated by the introduction of suitable defects and it is believed that the results provide some inspiration in the investigation of two-dimensional optoelectronic materials.
Abstract: The bandgaps of monolayer and bulk molybdenum sulfide (MoS2 ) result in that they are far from suitable for application as a saturable absorption device. In this paper, the operation of a broadband MoS2 saturable absorber is demonstrated by the introduction of suitable defects. It is believed that the results provide some inspiration in the investigation of two-dimensional optoelectronic materials.

654 citations

Journal ArticleDOI
TL;DR: In this paper, the authors systematically characterized the nonlinear optical response of MXene Ti3C2Tx nanosheets over the spectral range of 800 nm to 1800 nm, and they demonstrated the efficient broadband light signal manipulating capabilities of the large MXene family.
Abstract: Studies of the nonlinear optical phenomena that describe the light-matter interactions in 2D crystalline materials have promoted a diverse range of photonic applications. MXene, as a recently developed new 2D material, has attracted considerable attention because of its graphene-like but highly tunable and tailorable electronic/optical properties. In this study, we systematically characterize the nonlinear optical response of MXene Ti3C2Tx nanosheets over the spectral range of 800 nm to 1800 nm. A large effective nonlinear absorption coefficient (βeff∼-10−21 m2/V2) due to saturable absorption is observed for all of the testing wavelengths. The contribution of saturable absorption is two orders of magnitude higher than other lossy nonlinear absorption processes, and the amplitude of βeff strongly depends on the light bleaching level. A negative nonlinear refractive index (n2∼-10−20 m2/W) with value comparable to that of the intensively studied graphene was demonstrated for the first time. These results demonstrate the efficient broadband light signal manipulating capabilities of Ti3C2Tx, which is only one member of the large MXene family. The capability of an efficient broadband optical switch is strongly confirmed using Ti3C2Tx as saturable absorbers for mode-locking operation at 1066 nm and 1555 nm, respectively. A highly stable femtosecond laser with pulse duration as short as 159 fs in the telecommunication window is readily obtained. Considering the diversity of the MXene family, this study may open a new avenue to advanced photonic devices.

628 citations

Journal ArticleDOI
TL;DR: In this paper, a closed-form analysis of saturable absorber mode locking of a homogeneously broadened laser is presented for the case of a short relaxation time of the saturable absorbber.
Abstract: This paper presents a closed‐form analysis of saturable absorber mode locking of a homogeneously broadened laser. A solution is obtained for the case of a short relaxation time of the saturable absorber. This pulse is a hyperbolic secant as a function of time. For each choice of parameters two pulse widths are found. A stability analysis shows that the solution of greater width is stable. The requirements for achieving mode locking with a fast saturable absorber are stated. The effect of a time‐varying laser medium gain is investigated analytically.

617 citations

Journal ArticleDOI
TL;DR: In principle, different diameters and chiralities of nanotubes could be combined to enable compact, mode-locked fibre lasers that are tuneable over a much broader range of wavelengths than other systems.
Abstract: Ultrashort-pulse lasers with spectral tuning capability have widespread applications in fields such as spectroscopy, biomedical research and telecommunications1–3. Mode-locked fibre lasers are convenient and powerful sources of ultrashort pulses4, and the inclusion of a broadband saturable absorber as a passive optical switch inside the laser cavity may offer tuneability over a range of wavelengths5. Semiconductor saturable absorber mirrors are widely used in fibre lasers4–6, but their operating range is typically limited to a few tens of nanometres7,8, and their fabrication can be challenging in the 1.3–1.5 mm wavelength region used for optical communications9,10. Single-walled carbon nanotubes are excellent saturable absorbers because of their subpicosecond recovery time, low saturation intensity, polarization insensitivity, and mechanical and environmental robustness11–16. Here, we engineer a nanotube–polycarbonate film with a wide bandwidth (>300 nm) around 1.55 mm, and then use it to demonstrate a 2.4 ps Er31-doped fibre laser that is tuneable from 1,518 to 1,558 nm. In principle, different diameters and chiralities of nanotubes could be combined to enable compact, mode-locked fibre lasers that are tuneable over a much broader range of wavelengths than other systems.

616 citations


Network Information
Related Topics (5)
Optical fiber
167K papers, 1.8M citations
91% related
Plasmon
32.5K papers, 983.9K citations
89% related
Laser
353.1K papers, 4.3M citations
87% related
Resonator
76.5K papers, 1M citations
86% related
Semiconductor
72.6K papers, 1.2M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023196
2022540
2021467
2020573
2019724
2018679