scispace - formally typeset


Saturation (magnetic)

About: Saturation (magnetic) is a(n) research topic. Over the lifetime, 11228 publication(s) have been published within this topic receiving 189507 citation(s). The topic is also known as: saturation.

More filters
Journal ArticleDOI
Abstract: The Becker-Kersten treatment of domain boundary movements is widely applicable in the interpretation of magnetization curves, but it does not account satisfactorily for the higher coercivities obtained, for example, in permanent magnet alloys. It is suggested that in many ferromagnetic materials there may occur ‘particles’ (this term including atomic segregates or ‘islands’ in alloys), distinct in magnetic character from the general matrix, and below the critical size, depending on shape, for which domain boundary formation is energetically possible. For such single-domain particles, change of magnetization can take place only by rotation of the magnetization vector, I O . As the field changes continuously, the resolved magnetization, I H , may change discontinuously at critical values, H O , of the field. The character of the magnetization curves depends on the degree of magnetic anisotropy of the particle, and on the orientation of ‘easy axes’ with respect to the field. The magnetic anisotropy may arise from the shape of the particle, from magneto-crystalline effects, and from strain. A detailed quantitative treatment is given of the effect of shape anisotropy when the particles have the form of ellipsoids of revolution (§§ 2, 3, 4), and a less detailed treatment for the general ellipsoidal form (§ 5). For the first it is convenient to use the non-dimensional parameter such that h = H /(| N a - N b |) I O , N a and N b being the demagnetization coefficients along the polar and equatorial axes. The results are presented in tables and diagrams giving the variation with h of I H / I O . For the special limiting form of the oblate spheroid there is no hysteresis. For the prolate spheroid, as the orientation angle, θ , varies from 0 to 90°, the cyclic magnetization curves change from a rectangular form with | h O | = 1, to a linear non-hysteretic form, with an interesting sequence of intermediate forms. Exact expressions are obtained for the dependence of h θ on θ , and curves for random distribution are computed. All the numerical results are applicable when the anisotropy is due to longitudinal stress, when h = HI 0 /3λδ, where λ is the saturation magnetostriction coefficient, and δ the stress. The results also apply to magneto-crystalline anisotropy in the important and representative case in which there is a unique axis of easy magnetization as for hexagonal cobalt. Estimates are made of the magnitude of the effect of the various types of anisotropy. For iron the maximum coercivities, for the most favourable orientation, due to the magneto-crystalline and strain effects are about 400 and 600 respectively. These values are exceeded by those due to the shape effect in prolate spheroids if the dimensional ratio, m , is greater than 1·1; for m = 10, the corresponding value would be about 10,000 (§7). A fairly precise estimate is made of the lower limit for the equatorial diameter of a particle in the form of a prolate spheroid below which boundary formation cannot occur. As m varies from 1 (the sphere) to 10, this varies from 1·5 to 6·1 x 10 -6 for iron, and from 6·2 to 25 x 10 -6 for nickel (§ 6). A discussion is given (§ 7) of the application of these results to ( a ) non-ferromagnetic metals and alloys containing ferromagnetic ‘impurities’, ( b ) powder magnets, ( e ) high coeravity alloys of the dispersion hardening type. In connexion with ( c ) the possible bearing on the effects of cooling in a magnetic field is indicated.

4,108 citations

01 Sep 1955
Abstract: In this chapter, we will restrict our attention to the ferrites and a few other closely related materials. The great interest in ferrites stems from their unique combination of a spontaneous magnetization and a high electrical resistivity. The observed magnetization results from the difference in the magnetizations of two non-equivalent sub-lattices of the magnetic ions in the crystal structure. Materials of this type should strictly be designated as “ferrimagnetic” and in some respects are more closely related to anti-ferromagnetic substances than they are to ferromagnetics in which the magnetization results from the parallel alignment of all the magnetic moments present. We shall not adhere to this special nomenclature except to emphasize effects, which are due to the existence of the sub-lattices.

2,654 citations

Journal ArticleDOI
Abstract: A new compound composed of Nd, Fe, and a small quantity of B (about 1 wt. %) has been found, which has a tetragonal structure with lattice constants a=0.880 nm and c=1.221 nm. This phase, which has the approximate composition, 12 at. % Nd, 6 at. % B and balance Fe, possesses remarkable magnetic properties. From the approach to saturation an anisotroy constant of about 3.5 MJ/m3 can be calculated, while saturation magnetization amounts to 1.35 T. The magnetization versus temperature curve shows a Curie temperature of 585 K, which is much higher than those of the Fe and light rare earth binary compounds. Based on the new compound, sintered permanent magnets have been developed which have a record high energy product. Permanent magnet properties and physical properties of a typical specimen which has the composition Nd15B8Fe77 are as follows: Br =1.23 T, HcB =880 kA/m, HcI =960 kA/m, (BH)max =290 kJ/m3, temperature coefficient of Br =−1260 ppm/K, density=7.4 Mg/m3, specific resistivity=1.4 μΩm, Vickers hardn...

2,353 citations

Journal ArticleDOI
Abstract: It is proposed that permanent magnets can be made of composite materials consisting of two suitably dispersed ferromagnetic and mutually exchange-coupled phases, one of which is hard magnetic in order to provide a high coercive field, while the other may be soft magnetic, just providing a high saturation J/sub s/, and should envelop the hard phase regions in order to prevent their corrosion. A general theoretical treatment of such systems shows that one may expect, besides a high energy product (BH)/sub max/, a reversible demagnetization curve (exchange-spring) and, in certain cases, an unusually high isotropic remanence ratio B/sub r//J/sub s/, while the required volume fraction of the hard phase may be very low, on the order of 10%. The technological realization of such materials is shown to be based on the principle that all phases involved must emerge from a common metastable matrix phase in order to be crystallographically coherent and consequently magnetically exchange coupled. >

2,171 citations

Journal ArticleDOI
Abstract: A study has been made of the magnetic properties of the series of perovskite-type compounds $[(1\ensuremath{-}x)\mathrm{La}, x\mathrm{Ca}]\mathrm{Mn}{\mathrm{O}}_{3}$ The investigations have been made primarily by neutron diffraction methods, but x-ray diffraction measurements of lattice distortions and ferromagnetic saturation data are also included This series of compounds exhibits ferromagnetic and antiferromagnetic properties which depend upon the relative trivalent and tetravalent manganese ion content The samples are purely ferromagnetic over a relatively narrow range of composition ($x\ensuremath{\sim}035$) and show simultaneous occurrence of ferromagnetic and antiferromagnetic phases in the ranges ($0lxl025$) and ($040lxl05$) Several types of antiferromagnetic structures at $x=0$ and $xg05$ have also been determined The growth and mixing of the various phases have been followed over the whole composition range, the ferromagnetic and antiferromagnetic moment contributions to the coherent reflections have been determined, and Curie and N\'eel temperatures have been measured The results have been organized into a scheme of structures and structure transitions which is in remarkable accord with Goodenough's predictions based on a theory of semicovalent exchange

1,603 citations

Network Information
Related Topics (5)
Amorphous solid

117K papers, 2.2M citations

89% related
Thin film

275.5K papers, 4.5M citations

89% related

169.7K papers, 2.7M citations

84% related

196K papers, 3M citations

83% related

213.4K papers, 3.6M citations

82% related
No. of papers in the topic in previous years