scispace - formally typeset
Search or ask a question
Topic

Scalability

About: Scalability is a research topic. Over the lifetime, 50930 publications have been published within this topic receiving 931614 citations.


Papers
More filters
Proceedings ArticleDOI
04 Jan 2000
TL;DR: The Low-Energy Adaptive Clustering Hierarchy (LEACH) as mentioned in this paper is a clustering-based protocol that utilizes randomized rotation of local cluster based station (cluster-heads) to evenly distribute the energy load among the sensors in the network.
Abstract: Wireless distributed microsensor systems will enable the reliable monitoring of a variety of environments for both civil and military applications. In this paper, we look at communication protocols, which can have significant impact on the overall energy dissipation of these networks. Based on our findings that the conventional protocols of direct transmission, minimum-transmission-energy, multi-hop routing, and static clustering may not be optimal for sensor networks, we propose LEACH (Low-Energy Adaptive Clustering Hierarchy), a clustering-based protocol that utilizes randomized rotation of local cluster based station (cluster-heads) to evenly distribute the energy load among the sensors in the network. LEACH uses localized coordination to enable scalability and robustness for dynamic networks, and incorporates data fusion into the routing protocol to reduce the amount of information that must be transmitted to the base station. Simulations show the LEACH can achieve as much as a factor of 8 reduction in energy dissipation compared with conventional outing protocols. In addition, LEACH is able to distribute energy dissipation evenly throughout the sensors, doubling the useful system lifetime for the networks we simulated.

12,497 citations

01 Jan 2000
TL;DR: LEACH (Low-Energy Adaptive Clustering Hierarchy), a clustering-based protocol that utilizes randomized rotation of local cluster based station (cluster-heads) to evenly distribute the energy load among the sensors in the network, is proposed.
Abstract: Wireless distributed microsensor systems will enable the reliable monitoring of a variety of environments for both civil and military applications. In this paper, we look at communication protocols, which can have signicant impact on the overall energy dissipation of these networks. Based on our ndings that the conventional protocols of direct transmission, minimum-transmission-energy, multihop routing, and static clustering may not be optimal for sensor networks, we propose LEACH (Low-Energy Adaptive Clustering Hierarchy), a clustering-based protocol that utilizes randomized rotation of local cluster base stations (cluster-heads) to evenly distribute the energy load among the sensors in the network. LEACH uses localized coordination to enable scalability and robustness for dynamic networks, and incorporates data fusion into the routing protocol to reduce the amount of information that must be transmitted to the base station. Simulations show that LEACH can achieve as much as a factor of 8 reduction in energy dissipation compared with conventional routing protocols. In addition, LEACH is able to distribute energy dissipation evenly throughout the sensors, doubling the useful system lifetime for the networks we simulated.

11,412 citations

Proceedings Article
22 Jun 2010
TL;DR: Spark can outperform Hadoop by 10x in iterative machine learning jobs, and can be used to interactively query a 39 GB dataset with sub-second response time.
Abstract: MapReduce and its variants have been highly successful in implementing large-scale data-intensive applications on commodity clusters. However, most of these systems are built around an acyclic data flow model that is not suitable for other popular applications. This paper focuses on one such class of applications: those that reuse a working set of data across multiple parallel operations. This includes many iterative machine learning algorithms, as well as interactive data analysis tools. We propose a new framework called Spark that supports these applications while retaining the scalability and fault tolerance of MapReduce. To achieve these goals, Spark introduces an abstraction called resilient distributed datasets (RDDs). An RDD is a read-only collection of objects partitioned across a set of machines that can be rebuilt if a partition is lost. Spark can outperform Hadoop by 10x in iterative machine learning jobs, and can be used to interactively query a 39 GB dataset with sub-second response time.

4,959 citations

Proceedings ArticleDOI
01 Dec 2009
TL;DR: Content-Centric Networking (CCN) is presented, which treats content as a primitive - decoupling location from identity, security and access, and retrieving content by name, using new approaches to routing named content.
Abstract: Network use has evolved to be dominated by content distribution and retrieval, while networking technology still speaks only of connections between hosts. Accessing content and services requires mapping from the what that users care about to the network's where. We present Content-Centric Networking (CCN) which treats content as a primitive - decoupling location from identity, security and access, and retrieving content by name. Using new approaches to routing named content, derived heavily from IP, we can simultaneously achieve scalability, security and performance. We implemented our architecture's basic features and demonstrate resilience and performance with secure file downloads and VoIP calls.

3,556 citations

Proceedings ArticleDOI
18 May 2015
TL;DR: A novel network embedding method called the ``LINE,'' which is suitable for arbitrary types of information networks: undirected, directed, and/or weighted, and optimizes a carefully designed objective function that preserves both the local and global network structures.
Abstract: This paper studies the problem of embedding very large information networks into low-dimensional vector spaces, which is useful in many tasks such as visualization, node classification, and link prediction. Most existing graph embedding methods do not scale for real world information networks which usually contain millions of nodes. In this paper, we propose a novel network embedding method called the ``LINE,'' which is suitable for arbitrary types of information networks: undirected, directed, and/or weighted. The method optimizes a carefully designed objective function that preserves both the local and global network structures. An edge-sampling algorithm is proposed that addresses the limitation of the classical stochastic gradient descent and improves both the effectiveness and the efficiency of the inference. Empirical experiments prove the effectiveness of the LINE on a variety of real-world information networks, including language networks, social networks, and citation networks. The algorithm is very efficient, which is able to learn the embedding of a network with millions of vertices and billions of edges in a few hours on a typical single machine. The source code of the LINE is available online\footnote{\url{https://github.com/tangjianpku/LINE}}.

3,492 citations


Network Information
Related Topics (5)
Network packet
159.7K papers, 2.2M citations
91% related
Wireless sensor network
142K papers, 2.4M citations
90% related
Wireless network
122.5K papers, 2.1M citations
88% related
Wireless
133.4K papers, 1.9M citations
88% related
Cluster analysis
146.5K papers, 2.9M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20236,133
202212,865
20212,854
20203,111
20193,218
20183,140