scispace - formally typeset
Search or ask a question
Topic

Scalar potential

About: Scalar potential is a research topic. Over the lifetime, 3642 publications have been published within this topic receiving 78868 citations. The topic is also known as: potential.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors investigate cosmological models in a recently proposed geometrical theory of gravity, in which the scalar field appears as part of the spacetime geometry.
Abstract: We investigate cosmological models in a recently proposed geometrical theory of gravity, in which the scalar field appears as part of the spacetime geometry. We extend the previous theory to include a scalar potential in the action. We solve the vacuum field equations for different choices of the scalar potential and give a detailed analysis of the solutions. We show that, in some cases, a cosmological scenario is found that seems to suggest the appearance of a geometric phase transition. We build a toy model, in which the accelerated expansion of the early Universe is driven by pure geometry.

36 citations

Journal ArticleDOI
TL;DR: In this article, the authors explore the dynamics and observational predictions of the warm little inflaton scenario, presently the simplest realization of warm inflation within a concrete quantum field theory construction, and compute the properties of the primordial spectrum of scalar curvature perturbations and the tensor-to-scalar ratio in the allowed parametric regions.
Abstract: We explore the dynamics and observational predictions of the warm little inflaton scenario, presently the simplest realization of warm inflation within a concrete quantum field theory construction. We consider three distinct types of scalar potentials for the inflaton, namely chaotic inflation with a quartic monomial potential, a Higgs-like symmetry breaking potential and a non-renormalizable plateau-like potential. In each case, we determine the parametric regimes in which the dynamical evolution is consistent for 50-60 e-folds of inflation, taking into account thermal corrections to the scalar potential and requiring, in particular, that the two fermions coupled directly to the inflaton remain relativistic and close to thermal equilibrium throughout the slow-roll regime and that the temperature is always below the underlying gauge symmetry breaking scale. We then compute the properties of the primordial spectrum of scalar curvature perturbations and the tensor-to-scalar ratio in the allowed parametric regions and compare them with Planck data, showing that this scenario is theoretically and observationally successful for a broad range of parameter values.

36 citations

Journal ArticleDOI
TL;DR: In this article, the results obtained with several three-dimensional software packages for magnetostatic field calculation using the finite element method (FEM) are compared with regard to their accuracy and their computational time requirements.
Abstract: The results obtained with several three-dimensional software packages for magnetostatic field calculation using the finite-element method (FEM) are compared with regard to their accuracy and their computational time requirements. The packages are based on the vector potential (VPOT), the reduced scalar potential (RSP), and the total and reduced scalar potential (TSP+RSP), respectively. Results for an iron cylinder immersed in the field of a cylindrical coil are given. It is found that the finite-element formulation using a total and reduced scalar potential and the direct iteration method are useful for dealing with nonlinear magnetostatic field problems. >

36 citations

Journal ArticleDOI
TL;DR: In this article, a post-Friedmann vector potential is calculated from N-body simulations using the Delaunay Tessellation Field Estimator (DTE) code.
Abstract: Newtonian simulations are routinely used to examine the matter dynamics on non-linear scales. However, even on these scales, Newtonian gravity is not a complete description of gravitational effects. A post-Friedmann approach shows that the leading-order correction to Newtonian theory is a vector potential in the metric. This vector potential can be calculated from N-body simulations, requiring amethod for extracting the velocity field. Here, we present the full details of our calculation of the post-Friedmann vector potential, using the Delaunay Tessellation Field Estimator code. We include a detailed examination of the robustness of our numerical result, including the effects of box size and mass resolution on the extracted fields. We present the power spectrum of the vector potential and find that the power spectrum of the vector potential is ~10 5 times smaller than the power spectrum of the fully non-linear scalar gravitational potential at redshift zero. Comparing our numerical results to perturbative estimates, we find that the fully non-linear result can be more than an order of magnitude larger than the perturbative estimate on small scales.We extend the analysis of the vector potential to multiple redshifts, showing that this ratio persists over a range of scales and redshifts.We also comment on the implications of our results for the validity and interpretation of Newtonian simulations.

36 citations

Journal ArticleDOI
14 Mar 2019-Universe
TL;DR: The most general covariant, even-parity quadratic form for the observer's frame field in arbitrary dimension generalises the New General Relativity by nine functions of the d'Alembertian operator as mentioned in this paper.
Abstract: The observer’s frame is the more elementary description of the gravitational field than the metric. The most general covariant, even-parity quadratic form for the frame field in arbitrary dimension generalises the New General Relativity by nine functions of the d’Alembertian operator. The degrees of freedom are clarified by a covariant derivation of the propagator. The consistent and viable models can incorporate an ultra-violet completion of the gravity theory, an additional polarisation of the gravitational wave, and the dynamics of a magnetic scalar potential.

36 citations


Network Information
Related Topics (5)
Neutrino
45.9K papers, 1M citations
82% related
Gauge theory
38.7K papers, 1.2M citations
82% related
Supersymmetry
29.7K papers, 1.1M citations
81% related
Higgs boson
33.6K papers, 961.7K citations
80% related
Quark
43.3K papers, 951K citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202321
202238
2021137
2020149
2019147
2018147