scispace - formally typeset
Search or ask a question
Topic

Scalar potential

About: Scalar potential is a research topic. Over the lifetime, 3642 publications have been published within this topic receiving 78868 citations. The topic is also known as: potential.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors derived new gravitational field equations with a scalar potential function using the Einstein-Hilbert functional and established a unified theory for dark energy and dark matter.
Abstract: The main objective of this article is to derive new gravitational field equations and to establish a unified theory for dark energy and dark matter. The gravitational field equations with a scalar potential $\varphi$ function are derived using the Einstein-Hilbert functional, and the scalar potential $\varphi$ is a natural outcome of the divergence-free constraint of the variational elements. Gravitation is now described by the Riemannian metric $g_{\mu u}$, the scalar potential $\varphi$ and their interactions, unified by the new field equations. From quantum field theoretic point of view, the vector field $\Phi_\mu=D_\mu \varphi$, the gradient of the scalar function $\varphi$, is a spin-1 massless bosonic particle field. The field equations induce a natural duality between the graviton (spin-2 massless bosonic particle) and this spin-1 massless bosonic particle. Both particles can be considered as gravitational force carriers, and as they are massless, the induced forces are long-range forces. The (nonlinear) interaction between these bosonic particle fields leads to a unified theory for dark energy and dark matter. Also, associated with the scalar potential $\varphi$ is the scalar potential energy density $\frac{c^4}{8\pi G} \Phi=\frac{c^4}{8\pi G} g^{\mu u}D_\mu D_ u \varphi$, which represents a new type of energy caused by the non-uniform distribution of matter in the universe. The negative part of this potential energy density produces attraction, and the positive part produces repelling force. This potential energy density is conserved with mean zero: $\int_M \Phi dM=0$. The sum of this potential energy density $\frac{c^4}{8\pi G} \Phi$ and the coupling energy between the energy-momentum tensor $T_{\mu u}$ and the scalar potential field $\varphi$ gives rise to a unified theory for dark matter and dark energy: The negative part of this sum represents the dark matter, which produces attraction, and the positive part represents the dark energy, which drives the acceleration of expanding galaxies. In addition, the scalar curvature of space-time obeys $R=\frac{8\pi G}{c^4} T + \Phi$. Furthermore, the proposed field equations resolve a few difficulties encountered by the classical Einstein field equations.

20 citations

Journal ArticleDOI
TL;DR: In this article, the bending wave equation for thin plates including some higher-order terms is obtained by this general method and compared to the corresponding equation of Timoshenko, and exact and approximate expressions for the ratio of parallel to perpendicular displacements at a plate surface are calculated.

20 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss the electronic properties of graphene under an external periodic scalar or vector potential, and the analytical and numerical methods used to investigate them, and show that if the strength of the applied scalar potential is sufficiently strong, new zero-energy modes may be generated.
Abstract: We discuss the novel electronic properties of graphene under an external periodic scalar or vector potential, and the analytical and numerical methods used to investigate them. When graphene is subjected to a one-dimensional periodic scalar potential, owing to the linear dispersion and the chiral (pseudospin) nature of the electronic states, the group velocity of its carriers is renormalized highly anisotropically in such a manner that the velocity is invariant along the periodic direction but is reduced the most along the perpendicular direction. Under a periodic scalar potential, new massless Dirac fermions are generated at the supercell Brillouin zone boundaries. Also, we show that if the strength of the applied scalar potential is sufficiently strong, new zero-energy modes may be generated. With the periodic scalar potential satisfying some special conditions, the energy dispersion near the Dirac point becomes quasi one-dimensional. On the other hand, for graphene under a one-dimensional periodic vector potential (resulting in a periodic magnetic field perpendicular to the graphene plane), the group velocity is reduced isotropically and monotonically with the strength of the potential.

20 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the general application of Maxwell's equations to the forward scattering of radio waves from a meteor train considered as a cylindrical cold collisionless plasma, and the problem was reduced to the solution of two coupled equations for the components of the electric and magnetic fields along the axis of the train.

20 citations

Journal ArticleDOI
TL;DR: In this article, the two-loop counterterms for the gauge coupling and the scalar potential were obtained using the background-field method for any renormalize field theory in four dimensions.

20 citations


Network Information
Related Topics (5)
Neutrino
45.9K papers, 1M citations
82% related
Gauge theory
38.7K papers, 1.2M citations
82% related
Supersymmetry
29.7K papers, 1.1M citations
81% related
Higgs boson
33.6K papers, 961.7K citations
80% related
Quark
43.3K papers, 951K citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202321
202238
2021137
2020149
2019147
2018147