scispace - formally typeset
Search or ask a question
Topic

Scanning tunneling spectroscopy

About: Scanning tunneling spectroscopy is a research topic. Over the lifetime, 7886 publications have been published within this topic receiving 213828 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: Electron tunneling spectroscopy measurements on van der Waals heterostructures consisting of metal and graphene electrodes separated by atomically thin hexagonal boron nitride tunnel barriers are reported, leading to "Coulomb diamonds" in the tunneling conductance.
Abstract: Electron tunneling spectroscopy measurements on van der Waals heterostructures consisting of metal and graphene (or graphite) electrodes separated by atomically thin hexagonal boron nitride tunnel barriers are reported. The tunneling conductance, dI/dV, at low voltages is relatively weak, with a strong enhancement reproducibly observed to occur at around |V| ≈ 50 mV. While the weak tunneling at low energies is attributed to the absence of substantial overlap, in momentum space, of the metal and graphene Fermi surfaces, the enhancement at higher energies signals the onset of inelastic processes in which phonons in the heterostructure provide the momentum necessary to link the Fermi surfaces. Pronounced peaks in the second derivative of the tunnel current, d2I/dV2, are observed at voltages where known phonon modes in the tunnel junction have a high density of states. In addition, features in the tunneling conductance attributed to single electron charging of nanometer-scale defects in the boron nitride are ...

55 citations

Journal ArticleDOI
TL;DR: The combined technique provides promising applications in the fields of in situ characterization and diagnostics of metallofullerene-based nanodevices.
Abstract: The local structural and electronic properties of individual metallofullerenes are studied using scanning tunneling microscopy, scanning tunneling spectroscopy, and theoretical simulations. The energy-resolved metal-cage hybrid states of a single endohedral metallofullerene Dy@C82 isomer I have been spatially mapped, supporting a complex picture consisting of the orbital hybridization and charge transfer for the interaction between the cage and the metal atom. The relative position of the encapsulated Dy atom inside the cage and the molecular orientation on the surface have been inferred by comparing the experimental results with theoretical simulations. The combined technique provides promising applications in the fields of in situ characterization and diagnostics of metallofullerene-based nanodevices.

55 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of tip-induced molecular motion on the appearance of scanning tunneling microscope (STM) images of anthracene on Ag(110) was investigated for various tunneling parameters and at various temperatures.

55 citations

Journal ArticleDOI
TL;DR: In this paper, a study of the electronic and optical bandgap in layered TiS3 is presented, which is an almost unexplored semiconductor that has attracted recent attention because of its large carrier mobility and inplane anisotropic properties, to determine its exciton binding energy.
Abstract: A study of the electronic and optical bandgap is presented in layered TiS3, an almost unexplored semiconductor that has attracted recent attention because of its large carrier mobility and inplane anisotropic properties, to determine its exciton binding energy. Scanning tunneling spectroscopy and photoelectrochemical measurements are combined with random phase approximation and Bethe–Salpeter equation calculations to obtain the electronic and optical bandgaps and thus the exciton binding energy. Experimental values are found for the electronic bandgap, optical bandgap, and exciton binding energy of 1.2 eV, 1.07 eV, and 130 meV, respectively, and 1.15 eV, 1.05 eV, and 100 meV for the corresponding theoretical results. The exciton binding energy is orders of magnitude larger than that of common semiconductors and comparable to bulk transition metal dichalcogenides, making TiS3 ribbons a highly interesting material for optoelectronic applications and for studying excitonic phenomena even at room temperature.

55 citations


Network Information
Related Topics (5)
Band gap
86.8K papers, 2.2M citations
93% related
Quantum dot
76.7K papers, 1.9M citations
92% related
Magnetization
107.8K papers, 1.9M citations
90% related
Thin film
275.5K papers, 4.5M citations
90% related
Photoluminescence
83.4K papers, 1.8M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202345
202289
2021128
2020143
2019134
2018159