scispace - formally typeset
Search or ask a question
Topic

Scanning tunneling spectroscopy

About: Scanning tunneling spectroscopy is a research topic. Over the lifetime, 7886 publications have been published within this topic receiving 213828 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors presented scanning tunneling microscope images of several rare-earth metal silicides grown on silicon (001) for certain of the metals studied (Dy, Ho), an anisotropy in lattice match with the substrate results in the formation of nanowires.
Abstract: This paper presents scanning tunneling microscope images of several rare-earth metal silicides grown on silicon (001). For certain of the metals studied (Dy, Ho), an anisotropy in lattice match with the substrate results in the formation of nanowires. These nanowires have desirable properties such as nanometer lateral dimension, crystalline structure with a low density of defects, and micrometer scale length. Tunneling spectroscopy on the nanowires indicates that they are metallic.

205 citations

Journal ArticleDOI
Paul Muralt1, Dieter W. Pohl1
TL;DR: In this article, the potential distribution with microscopic resolution at interfaces (Schottky barriers) or pn junctions is obtained by scanning tunneling potentiometry, which is used for simultaneously sensing probe-to-sample distance and local potential.
Abstract: In certain problems of electrical transport through condensed matter, it is important to know the potential distribution with microscopic resolution, e.g., at interfaces (Schottky barriers) or pn junctions. Scanning tunneling potentiometry, a new application of scanning tunneling microscopy, is capable of providing this information. The tunnel current is used for simultaneously sensing probe-to-sample distance and local potential. The method was tested with a gold-island metal-insulator-metal structure.

205 citations

Journal ArticleDOI
Phaedon Avouris1, Robert A. Wolkow1
TL;DR: In this paper, the reaction of Si(11l)-(7×7) with NH3 was studied using scanning tunneling microscopy and spectroscopy, and it was found that the reaction at a rest-atom site can be considered a dangling-bond saturation process, reaction at an adatom site involves the formation of a hypervalent (fivefold-coordinated) adatom.
Abstract: We have used scanning tunneling microscopy and spectroscopy to study the reaction of Si(111)- (7×7) with NH3. We have found that by use of topographs obtained at different energies, as well as atom-resolved spectra, reacted and unreacted surface sites can be imaged selectively. Thus we have been able to probe the spatial distribution of the surface reaction on an atom-by-atom basis. We find that there are significant differences in reactivity between the various dangling-bond sites on the Si(11l)-(7×7) surface. Specifically, rest-atom sites are more reactive than adatom sites and, moreover, center-adatom sites are more reactive than corner-adatom sites. We ascribe the reduced reactivity at adatom sites to the delocalized nature of their dangling-bond state. We suggest that a bonding interaction between adatoms and the Si atoms directly below them is responsible for this behavior—a suggestion supported by electronic-structure calculations. Thus, while reaction at a rest-atom site can be considered a dangling-bond saturation process, reaction at an adatom site involves the formation of a hypervalent (fivefold-coordinated) adatom. We tentatively ascribe the reactivity differences between center and corner adatoms to differences in the strain they induce upon reaction on the dimer bonds. Atom-resolved spectroscopy allows us to probe interactions and charge transfer between surface sites, and for the first time, we can directly observe how chemisorption affects the substrate electronic structure at neighboring unreacted sites.

204 citations

Journal ArticleDOI
TL;DR: The tunneling spectrum shows that the density of states at the Fermi level is fully gapped without any in-gap states, which suggests that Cu(x)Bi(2)Se(3) is a classical s-wave superconductor contrary to previous expectations and measurements.
Abstract: Topological superconductors represent a newly predicted phase of matter that is topologically distinct from conventional superconducting condensates of Cooper pairs. As a manifestation of their topological character, topological superconductors support solid-state realizations of Majorana fermions at their boundaries. The recently discovered superconductor Cu(x)Bi(2)Se(3) has been theoretically proposed as an odd-parity superconductor in the time-reversal-invariant topological superconductor class, and point-contact spectroscopy measurements have reported the observation of zero-bias conductance peaks corresponding to Majorana states in this material. Here we report scanning tunneling microscopy measurements of the superconducting energy gap in Cu(x)Bi(2)Se(3) as a function of spatial position and applied magnetic field. The tunneling spectrum shows that the density of states at the Fermi level is fully gapped without any in-gap states. The spectrum is well described by the Bardeen-Cooper-Schrieffer theory with a momentum independent order parameter, which suggests that Cu(x)Bi(2)Se(3) is a classical s-wave superconductor contrary to previous expectations and measurements.

202 citations


Network Information
Related Topics (5)
Band gap
86.8K papers, 2.2M citations
93% related
Quantum dot
76.7K papers, 1.9M citations
92% related
Magnetization
107.8K papers, 1.9M citations
90% related
Thin film
275.5K papers, 4.5M citations
90% related
Photoluminescence
83.4K papers, 1.8M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202345
202289
2021128
2020143
2019134
2018159