scispace - formally typeset
Search or ask a question
Topic

Scanning tunneling spectroscopy

About: Scanning tunneling spectroscopy is a research topic. Over the lifetime, 7886 publications have been published within this topic receiving 213828 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors combine low-temperature noncontact atomic force microscopy (nc-AFM), STS, and state-of-the-art ab initio density functional theory (DFT) and GW calculations to determine both the structure and electronic properties of the most abundant individual chalcogen-site defects common to 2D-TMDs.
Abstract: Chalcogen vacancies are considered to be the most abundant point defects in two-dimensional (2D) transition-metal dichalcogenide (TMD) semiconductors, and predicted to result in deep in-gap states (IGS). As a result, important features in the optical response of 2D-TMDs have typically been attributed to chalcogen vacancies, with indirect support from Transmission Electron Microscopy (TEM) and Scanning Tunneling Microscopy (STM) images. However, TEM imaging measurements do not provide direct access to the electronic structure of individual defects; and while Scanning Tunneling Spectroscopy (STS) is a direct probe of local electronic structure, the interpretation of the chemical nature of atomically-resolved STM images of point defects in 2D-TMDs can be ambiguous. As a result, the assignment of point defects as vacancies or substitutional atoms of different kinds in 2D-TMDs, and their influence on their electronic properties, has been inconsistent and lacks consensus. Here, we combine low-temperature non-contact atomic force microscopy (nc-AFM), STS, and state-of-the-art ab initio density functional theory (DFT) and GW calculations to determine both the structure and electronic properties of the most abundant individual chalcogen-site defects common to 2D-TMDs. Surprisingly, we observe no IGS for any of the chalcogen defects probed. Our results and analysis strongly suggest that the common chalcogen defects in our 2D-TMDs, prepared and measured in standard environments, are substitutional oxygen rather than vacancies.

106 citations

Journal ArticleDOI
TL;DR: In this article, the vibrational amplitude of a transverse shear mode quartz resonator was measured by directly imaging the surface oscillatory motion with a scanning tunneling microscope, and the results confirmed theoretical predictions to within a factor of two.
Abstract: We report highly accurate measurements of the vibrational amplitude of a transverse shear mode quartz resonator, obtained by directly imaging the surface oscillatory motion with a scanning tunneling microscope. Amplitude measurements, performed over a range of resonator drive levels and quality factors, agree with theoretical predictions to within a factor of two.

105 citations

Journal ArticleDOI
TL;DR: In this article, the authors reported the growth of monolayer VSe2 by molecular beam epitaxy (MBE) method, which revealed that the as-grown monolayers VSe 2 has magnetic characteristic peaks in its electronic density of states and a lower work-function at its edges.
Abstract: Recent experimental breakthroughs open up new opportunities for magnetism in few-atomic-layer two-dimensional (2D) materials, which makes fabrication of new magnetic 2D materials a fascinating issue. Here, we report the growth of monolayer VSe2 by molecular beam epitaxy (MBE) method. Electronic properties measurements by scanning tunneling spectroscopy (STS) method revealed that the as-grown monolayer VSe2 has magnetic characteristic peaks in its electronic density of states and a lower work-function at its edges. Moreover, air exposure experiments show air-stability of the monolayer VSe2. This high-quality monolayer VSe2, a very air-inert 2D material with magnetism and low edge work function, is promising for applications in developing next-generation low power-consumption, high efficiency spintronic devices and new electrocatalysts.

105 citations

Journal ArticleDOI
TL;DR: Takada and Nakamura as discussed by the authors calculated tunneling energy splittings of vibrationally excited states using several models of two-dimensional symmetric double well potentials, depending on the topography of potential energy surface; the symmetry of the mode coupling plays an essential role.
Abstract: Tunneling energy splittings of vibrationally excited states are calculated quantum mechanically using several models of two‐dimensional symmetric double well potentials. Various effects of vibrational excitation on tunneling are found to appear, depending on the topography of potential energy surface; the symmetry of the mode coupling plays an essential role. Especially, oscillation of tunneling splitting with respect to vibrational quantum number can occur and is interpreted by a clear physical picture based on the semiclassical theory formulated recently [Takada and Nakamura, J. Chem. Phys. 100, 98 (1994)]. The mixed tunneling in the C region found there allows the wave functions to have nodal lines in classically inaccessible region and can cause the suppression of the tunneling. The above analysis is followed by the interpretation of recent experiments of proton tunneling in tropolone. Ab initio molecular orbital calculations are carried out for the electronically ground state. A simple three‐dimensio...

105 citations

Journal ArticleDOI
TL;DR: The interplay between the ligand field at the O adsorption sites and spin-orbit coupling is analyzed by density functional theory and multiplet calculations, providing a comprehensive model of the magnetic properties of Fe atoms in a low-symmetry bonding environment.
Abstract: We report on the magnetic properties of individual Fe atoms deposited on MgO(100) thin films probed by x-ray magnetic circular dichroism and scanning tunneling spectroscopy. We show that the Fe atoms have strong perpendicular magnetic anisotropy with a zero-field splitting of 14.0±0.3 meV/atom. This is a factor of 10 larger than the interface anisotropy of epitaxial Fe layers on MgO and the largest value reported for Fe atoms adsorbed on surfaces. The interplay between the ligand field at the O adsorption sites and spin-orbit coupling is analyzed by density functional theory and multiplet calculations, providing a comprehensive model of the magnetic properties of Fe atoms in a low-symmetry bonding environment.

105 citations


Network Information
Related Topics (5)
Band gap
86.8K papers, 2.2M citations
93% related
Quantum dot
76.7K papers, 1.9M citations
92% related
Magnetization
107.8K papers, 1.9M citations
90% related
Thin film
275.5K papers, 4.5M citations
90% related
Photoluminescence
83.4K papers, 1.8M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202345
202289
2021128
2020143
2019134
2018159