scispace - formally typeset
Search or ask a question
Topic

Schottky barrier

About: Schottky barrier is a research topic. Over the lifetime, 22570 publications have been published within this topic receiving 427746 citations. The topic is also known as: Schottky barrier junction.


Papers
More filters
Journal ArticleDOI
TL;DR: Understanding of the correlation between surface chemistry and electronic/transport properties of 2D materials is enhanced, and predictions for improving 2D electronics are given.
Abstract: Two-dimensional (2D) metal carbides and nitrides, called MXenes, have attracted great interest for applications such as energy storage. We demonstrate their potential as Schottky-barrier-free metal contacts to 2D semiconductors, providing a solution to the contact-resistance problem in 2D electronics. On the basis of first-principles calculations, we find that the surface chemistry strongly affects Fermi level of MXenes: O termination always increases the work function with respect to that of bare surface, OH always decreases it, whereas F exhibits either trend depending on the specific material. This phenomenon originates from the effect of surface dipoles, which together with the weak Fermi level pinning, enable Schottky-barrier-free hole (or electron) injection into 2D semiconductors through van der Waals junctions with some of the O-terminated (or all the OH-terminated) MXenes. Furthermore, we suggest synthetic routes to control surface terminations based on calculated formation energies. This study e...

386 citations

Journal ArticleDOI
TL;DR: In this paper, field-plated Schottky barrier diodes (FP-SBDs) were fabricated on a Si-doped n−-Ga2O3 drift layer grown by halide vapor phase epitaxy on a Sn-Doped n+-Ga 2O3 (001) substrate.
Abstract: Ga2O3 field-plated Schottky barrier diodes (FP-SBDs) were fabricated on a Si-doped n−-Ga2O3 drift layer grown by halide vapor phase epitaxy on a Sn-doped n+-Ga2O3 (001) substrate. The specific on-resistance of the Ga2O3 FP-SBD was estimated to be 5.1 mΩ·cm2. Successful field-plate engineering resulted in a high breakdown voltage of 1076 V. A larger-than-expected effective barrier height of 1.46 eV, which was extracted from the temperature-dependent current–voltage characteristics, could be caused by the effect of fluorine atoms delivered in a hydrofluoric acid solution process.

386 citations

Journal ArticleDOI
TL;DR: In this article, the authors report ambipolar charge transport in α-molybdenum ditelluride (MoTe2 ) flakes, whereby the temperature dependence of the electrical characteristics was systematically analyzed.
Abstract: We report ambipolar charge transport in α-molybdenum ditelluride (MoTe2 ) flakes, whereby the temperature dependence of the electrical characteristics was systematically analyzed. The ambipolarity of the charge transport originated from the formation of Schottky barriers at the metal/MoTe2 contacts. The Schottky barrier heights as well as the current on/off ratio could be modified by modulating the electrostatic fields of the back-gate voltage (Vbg) and drain-source voltage (Vds). Using these ambipolar MoTe2 transistors we fabricated complementary inverters and amplifiers, demonstrating their feasibility for future digital and analog circuit applications.

385 citations

Journal ArticleDOI
TL;DR: In this article, a controllable construction of ultrathin 2D MXene-based heterojunction photocatalysts is presented, which is capable of providing accelerated charge separation and a lower Schottky barrier for solar-driven hydrogen evolution from water splitting.
Abstract: Benefiting from excellent metallic conductivity, full-spectrum solar energy absorption and rich active sites on the surface, atomically thin two-dimensional transition metal carbide (2D MXene) shows great promise in improving solar-to-hydrogen efficiency and has drawn intense interest in the field of photocatalysis. However, controllable construction of ultrathin 2D MXene-based heterojunction photocatalysts still remains a significant challenge. Herein, one-dimensional (1D) CdS nanorod/2D MXene nanosheet heterojunctions with well-defined nanostructures and strong interfacial coupling are fabricated by in situ assembling solvothermally-generated CdS nanorods on ultrathin Ti3C2 MXene nanosheets. Due to their specific interface characteristics, 1D/2D Schottky heterojunction is capable of providing accelerated charge separation and a lower Schottky barrier for solar-driven hydrogen evolution from water splitting. As expected, the Schottky-based photocatalyst is 7-fold more active in the illuminated hydrogen evolution reaction (HER) than pristine CdS nanorods, implying the synergistic effects between n-type semiconductor CdS and highly conductive 2D Ti3C2 MXene nanosheets.

384 citations

Journal ArticleDOI
TL;DR: In this article, the authors report state-of-the-art high frequency performance of GaN-based high electron mobility transistors (HEMTs) and Schottky diodes achieved through innovative device scaling technologies such as vertically scaled enhancement and depletion mode (E/D mode) AlN/GaN/AlGaN double-heterojunction HEMT epitaxial structures.
Abstract: In this paper, we report state-of-the-art high frequency performance of GaN-based high electron mobility transistors (HEMTs) and Schottky diodes achieved through innovative device scaling technologies such as vertically scaled enhancement and depletion mode (E/D mode) AlN/GaN/AlGaN double-heterojunction HEMT epitaxial structures, a low-resistance n+-GaN/2DEG ohmic contact regrown by MBE, a manufacturable 20-nm symmetric and asymmetric self-aligned-gate process, and a lateral metal/2DEG Schottky contact. As a result of proportional scaling of intrinsic and parasitic delays, an ultrahigh fT exceeding 450 GHz (with a simultaneous fmax of 440 GHz) and a fmax close to 600 GHz (with a simultaneous fT of 310 GHz) are obtained in deeply scaled GaN HEMTs while maintaining superior Johnson figure of merit. Because of their extremely low on-resistance and high gain at low drain voltages, the devices exhibited excellent noise performance at low power. 501-stage direct-coupled field-effect transistor logic ring oscillator circuits are successfully fabricated with high yield and high uniformity, demonstrating the feasibility of GaN-based E/D-mode integrated circuits with transistors. Furthermore, self-aligned GaN Schottky diodes with a lateral metal/2DEG Schottky contact and a 2DEG/ n+-GaN ohmic contact exhibited RC-limited cutoff frequencies of up to 2.0 THz.

384 citations


Network Information
Related Topics (5)
Silicon
196K papers, 3M citations
94% related
Thin film
275.5K papers, 4.5M citations
94% related
Band gap
86.8K papers, 2.2M citations
93% related
Photoluminescence
83.4K papers, 1.8M citations
92% related
Quantum dot
76.7K papers, 1.9M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023565
2022988
2021672
2020758
2019824
2018847