scispace - formally typeset
Search or ask a question
Topic

Schottky barrier

About: Schottky barrier is a research topic. Over the lifetime, 22570 publications have been published within this topic receiving 427746 citations. The topic is also known as: Schottky barrier junction.


Papers
More filters
Journal ArticleDOI
Stefan Heinze1, Jerry Tersoff1, Richard Martel1, Vincent Derycke1, Joerg Appenzeller1, Ph. Avouris1 
TL;DR: In this paper, the authors show that carbon nanotube transistors operate as unconventional Schottky barrier transistors, in which transistor action occurs primarily by varying the contact resistance rather than the channel conductance.
Abstract: We show that carbon nanotube transistors operate as unconventional "Schottky barrier transistors," in which transistor action occurs primarily by varying the contact resistance rather than the channel conductance. Transistor characteristics are calculated for both idealized and realistic geometries, and scaling behavior is demonstrated. Our results explain a variety of experimental observations, including the quite different effects of doping and adsorbed gases. The electrode geometry is shown to be crucial for good device performance.

1,225 citations

Journal ArticleDOI
21 Apr 2000-Science
TL;DR: Junctions consisting of two crossed single-walled carbon nanotubes were fabricated with electrical contacts at each end of each nanotube, identified as metallic (M) or semiconducting (S), based on their two-terminal conductances; MM, MS, and SS four- terminal devices were studied.
Abstract: Junctions consisting of two crossed single-walled carbon nanotubes were fabricated with electrical contacts at each end of each nanotube. The individual nanotubes were identified as metallic (M) or semiconducting (S), based on their two-terminal conductances; MM, MS, and SS four-terminal devices were studied. The MM and SS junctions had high conductances, on the order of 0.1 e 2 / h (where e is the electron charge and h is Planck9s constant). For an MS junction, the semiconducting nanotube was depleted at the junction by the metallic nanotube, forming a rectifying Schottky barrier. We used two- and three-terminal experiments to fully characterize this junction.

1,145 citations

Journal ArticleDOI
Jerry Tersoff1
TL;DR: In this paper, the Schottky barrier heights for metal-semiconductor interfaces with a variety of metals have been calculated, and they are in excellent agreement with experiment for interfaces with various metals.
Abstract: Simple physical considerations of local charge neutrality suggest that near a metal-semiconductor interface, the Fermi level in the semiconductor is pinned near an effective gap center, which is simply related to the bulk semiconductor band structure. In this way “canonical” Schottky barrier heights are calculated for several semiconductors. These are in excellent agreement with experiment for interfaces with a variety of metals.

1,121 citations

Journal ArticleDOI
16 May 2018-Nature
TL;DR: The creation of van der Waals metal–semiconductor junctions is reported, in which atomically flat metal thin films are laminated onto two-dimensional semiconductors without direct chemical bonding, creating an interface that is essentially free from chemical disorder and Fermi-level pinning.
Abstract: The junctions formed at the contact between metallic electrodes and semiconductor materials are crucial components of electronic and optoelectronic devices 1 . Metal-semiconductor junctions are characterized by an energy barrier known as the Schottky barrier, whose height can, in the ideal case, be predicted by the Schottky-Mott rule2-4 on the basis of the relative alignment of energy levels. Such ideal physics has rarely been experimentally realized, however, because of the inevitable chemical disorder and Fermi-level pinning at typical metal-semiconductor interfaces2,5-12. Here we report the creation of van der Waals metal-semiconductor junctions in which atomically flat metal thin films are laminated onto two-dimensional semiconductors without direct chemical bonding, creating an interface that is essentially free from chemical disorder and Fermi-level pinning. The Schottky barrier height, which approaches the Schottky-Mott limit, is dictated by the work function of the metal and is thus highly tunable. By transferring metal films (silver or platinum) with a work function that matches the conduction band or valence band edges of molybdenum sulfide, we achieve transistors with a two-terminal electron mobility at room temperature of 260 centimetres squared per volt per second and a hole mobility of 175 centimetres squared per volt per second. Furthermore, by using asymmetric contact pairs with different work functions, we demonstrate a silver/molybdenum sulfide/platinum photodiode with an open-circuit voltage of 1.02 volts. Our study not only experimentally validates the fundamental limit of ideal metal-semiconductor junctions but also defines a highly efficient and damage-free strategy for metal integration that could be used in high-performance electronics and optoelectronics.

1,116 citations

Patent
24 Jun 2003
TL;DR: In this article, a gate electrode is formed on the gate insulating layer, and a source contact and a drain contact are disposed at the both sides of the gate contact and are electrically connected to the channel layer via openings.
Abstract: A zinc oxide (ZnO) field effect transistor exhibits large input amplitude by using a gate insulating layer. A channel layer and the gate insulating layer are sequentially laminated on a substrate. A gate electrode is formed on the gate insulating layer. A source contact and a drain contact are disposed at the both sides of the gate contact and are electrically connected to the channel layer via openings. The channel layer is formed from n-type ZnO. The gate insulating layer is made from aluminum nitride/aluminum gallium nitride (AlN/AlGaN) or magnesium zinc oxide (MgZnO), which exhibits excellent insulation characteristics, thus increasing the Schottky barrier and achieving large input amplitude. If the FET is operated in the enhancement mode, it is operable in a manner similar to a silicon metal oxide semiconductor field effect transistor (Si-MOS-type FET), resulting in the formation of an inversion layer.

1,048 citations


Network Information
Related Topics (5)
Silicon
196K papers, 3M citations
94% related
Thin film
275.5K papers, 4.5M citations
94% related
Band gap
86.8K papers, 2.2M citations
93% related
Photoluminescence
83.4K papers, 1.8M citations
92% related
Quantum dot
76.7K papers, 1.9M citations
90% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023565
2022988
2021672
2020758
2019824
2018847