scispace - formally typeset
Search or ask a question
Topic

Scintillation

About: Scintillation is a research topic. Over the lifetime, 14022 publications have been published within this topic receiving 187694 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The iQID detector was originally developed as a high-resolution gamma-ray imager for use in single-photon emission computed tomography (SPECT), but recently, the detector's response and imaging potential with other forms of ionizing radiation including alpha, neutron, beta, and fission fragment particles has prompted its new title.
Abstract: We have developed and tested a novel, ionizing-radiation Quantum Imaging Detector (iQID). This scintillation-based detector was originally developed as a high-resolution gamma-ray imager, called BazookaSPECT, for use in single-photon emission computed tomography (SPECT). Recently, we have investigated the detector's response and imaging potential with other forms of ionizing radiation including alpha, neutron, beta, and fission fragment particles. The confirmed response to this broad range of ionizing radiation has prompted its new title. The principle operation of the iQID camera involves coupling a scintillator to an image intensifier. The scintillation light generated by particle interactions is optically amplified by the intensifier and then re-imaged onto a CCD/CMOS camera sensor. The intensifier provides sufficient optical gain that practically any CCD/CMOS camera can be used to image ionizing radiation. The spatial location and energy of individual particles are estimated on an event-by-event basis in real time using image analysis algorithms on high-performance graphics processing hardware. Distinguishing features of the iQID camera include portability, large active areas, excellent detection efficiency for charged particles, and high spatial resolution (tens of microns). Although modest, iQID has energy resolution that is sufficient to discriminate between particles. Additionally, spatial features of individual events can be used for particle discrimination. An important iQID imaging application that has recently been developed is real-time, single-particle digital autoradiography. We present the latest results and discuss potential applications.

70 citations

Journal ArticleDOI
TL;DR: In this article, a set of electroluminescence and other transport parameters calculated using a detailed three-dimensional Monte Carlo method, which simulates the drift of electrons in gaseous xenon (p=760 Torr, T=293 K) under reduced electric fields E/N in the 3 to 16 Td range (E/P approximately 1 to 5 V cm-1 Torr-1), was presented.
Abstract: The paper presents a set of electroluminescence and other transport parameters calculated using a detailed three-dimensional Monte Carlo method, which simulates the drift of electrons in gaseous xenon (p=760 Torr, T=293 K) under reduced electric fields E/N in the 3 to 16 Td range (E/P approximately 1 to 5 V cm-1 Torr-1), which is the region for secondary scintillation production in xenon filled gas proportional scintillation counters. Results are compared with available experimental or theoretical data as well as an earlier one-dimensional Monte Carlo simulation. The calculated parameters are the excitation and scintillation efficiencies and the reduced light yield, together with mean time intervals, mean drift distances and mean number of elastic collisions between xenon excitation collisions. The authors also present electron drift velocities, mobilities and characteristic energies, as well as mean electron energy and electron energy distribution functions.

70 citations

Journal ArticleDOI
TL;DR: The strengths and weaknesses of each dosimetry system are identified and recommendations for the optimum method for common clinical Dosimetry situations are made.
Abstract: In scintillation dosimetry, a Cerenkov background signal is generated when a conventional fibre optic is exposed to radiation produced by a megavoltage linear accelerator. Three methods of measuring dose in the presence of Cerenkov background are compared. In the first method, a second background fibre is used to estimate the Cerenkov signal in the signal fibre. In the second method, a colour camera is used to measure the combined scintillation and Cerenkov light in two wavelength ranges and a mathematical process is used to extract the scintillation signal. In the third method, a hollow air core light guide is used to carry the scintillation signal through the primary radiation field. In this paper, the strengths and weaknesses of each dosimetry system are identified and recommendations for the optimum method for common clinical dosimetry situations are made.

70 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the role of the cusp auroral processes in the production of irregularities, and found that the occurrence rate of the GPS phase scintillation is highest inside the auroral cusp, regardless of the scintillillation strength and the interplanetary magnetic field (IMF).
Abstract: The climatology map of the GPS phase scintillation identifies two regions of high scintillation occurrences: around magnetic noon and around magnetic midnight. The scintillation occurrence rate is higher around noon, while the scintillation level is stronger around magnetic midnight. This paper focuses on the dayside scintillation region. In order to resolve the role of the cusp auroral processes in the production of irregularities, we put the GPS phase scintillation in the context of the observed auroral morphology. Results show that the occurrence rate of the GPS phase scintillation is highest inside the auroral cusp, regardless of the scintillation strength and the interplanetary magnetic field (IMF). On average, the scintillation occurrence rate in the cusp region is about 5 times as high as in the region immediately poleward of it. The scintillation occurrence rate is higher when the IMF Bz is negative. When partitioning the scintillation data by the IMF By, the distribution of the scintillation occurrence rate around magnetic noon is similar to that of the poleward moving auroral form (PMAF): there is a higher occurrence rate at earlier (later) magnetic local time when the IMF By is positive (negative). This indicates that the irregularities which give rise to scintillations follow the IMF By-controlled east-west motion of the aurora and plasma. Furthermore, the scintillation occurrence rate is higher when IMF By is positive when the cusp is shifted toward the post noon sector where it may get easier access to the higher density plasma. This suggests that the combined auroral activities (e.g., PMAF) and the density of the intake solar EUV ionized plasma are crucial for the production of scintillations.

70 citations

Journal ArticleDOI
TL;DR: In this article, an all-inorganic lead-free halides Cs-Cu-I system, represented by Cs3Cu2I5 and Cscu2I3, has attracted attention for their good photophysical characteristics recently.
Abstract: An all-inorganic lead-free halides Cs-Cu-I system, represented by Cs3Cu2I5 and CsCu2I3, has attracted attention for their good photophysical characteristics recently. Successive works had reported their application potential in light-emitting devices. However, there is no report for CsCu2I3 in X-ray scintillation detectors so far. We notice that CsCu2I3 may be advantageous in such an application due to the one-dimensional crystal structure, the congruent-melting feature, and the high spectral matching to some photosensors. In this work, we explore the scintillation properties and imaging application of CsCu2I3 in X-ray scintillator detector. The oriented structure is designed to enhance the imaging performance of a CsCu2I3 detector. Close-space sublimation process and nanoscale seed screening strategy are employed to realize this design by producing a large-area (25 cm2) CsCu2I3 thick film layer with the oriented nanorod structure. This CsCu2I3 detector eventually achieves a high spatial resolution of 7.5 lp mm-1 in X-ray imaging.

70 citations


Network Information
Related Topics (5)
Electron
111.1K papers, 2.1M citations
80% related
Scattering
152.3K papers, 3M citations
80% related
Magnetic field
167.5K papers, 2.3M citations
78% related
Electric field
87.1K papers, 1.4M citations
78% related
Beam (structure)
155.7K papers, 1.4M citations
77% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023429
2022972
2021405
2020521
2019561
2018566