scispace - formally typeset
Search or ask a question
Topic

Sclerotinia sclerotiorum

About: Sclerotinia sclerotiorum is a research topic. Over the lifetime, 3756 publications have been published within this topic receiving 70244 citations. The topic is also known as: white mold & cottony soft rot.


Papers
More filters
Journal ArticleDOI
TL;DR: It is shown that, although hypersensitive cell death is efficient against biotrophic pathogens, it does not protect plants against infection by the necrotrophic pathogens B. cinerea and S. sclerotiorum.

1,081 citations

Journal ArticleDOI
TL;DR: An index of plant hosts of Sclerotinia sclerotiorum is presented, showing the importance of knowing the phytochemical properties of these hosts to identify the carriers of the virus.
Abstract: (1994). Index of plant hosts of Sclerotinia sclerotiorum. Canadian Journal of Plant Pathology: Vol. 16, No. 2, pp. 93-108.

987 citations

Journal ArticleDOI
TL;DR: This review summarizes current knowledge of mechanisms employed by the fungus to parasitize its host with emphasis on biology, physiology and molecular aspects of pathogenicity.
Abstract: Sclerotinia sclerotiorum (Lib.) de Bary is a necrotrophic fungal pathogen causing disease in a wide range of plants. This review summarizes current knowledge of mechanisms employed by the fungus to parasitize its host with emphasis on biology, physiology and molecular aspects of pathogenicity. In addition, current tools for research and strategies to combat S. sclerotiorum are discussed. Taxonomy: Sclerotinia sclerotiorum (Lib.) de Bary: kingdom Fungi, phylum Ascomycota, class Discomycetes, order Helotiales, family Sclerotiniaceae, genus Sclerotinia. Identification: Hyphae are hyaline, septate, branched and multinucleate. Mycelium may appear white to tan in culture and in planta. No asexual conidia are produced. Long-term survival is mediated through the sclerotium; a pigmented, multi-hyphal structure that can remain viable over long periods of time under unfavourable conditions for growth. Sclerotia can germinate to produce mycelia or apothecia depending on environmental conditions. Apothecia produce ascospores, which are the primary means of infection in most host plants. Host range: S. sclerotiorum is capable of colonizing over 400 plant species found worldwide. The majority of these species are dicotyledonous, although a number of agriculturally significant monocotyledonous plants are also hosts. Disease symptoms: Leaves usually have water-soaked lesions that expand rapidly and move down the petiole into the stem. Infected stems of some species will first develop dark lesions whereas the initial indication in other hosts is the appearance of water-soaked stem lesions. Lesions usually develop into necrotic tissues that subsequently develop patches of fluffy white mycelium, often with sclerotia, which is the most obvious sign of plants infected with S. sclerotiorum.

866 citations

Journal ArticleDOI
TL;DR: Comparative genome analysis revealed the basis of differing sexual mating compatibility systems between S. sclerotiorum and B. cinerea, and shed light on the evolutionary and mechanistic bases of the genetically complex traits of necrotrophic pathogenicity and sexual mating.
Abstract: Sclerotinia sclerotiorum and Botrytis cinerea are closely related necrotrophic plant pathogenic fungi notable for their wide host ranges and environmental persistence. These attributes have made these species models for understanding the complexity of necrotrophic, broad host-range pathogenicity. Despite their similarities, the two species differ in mating behaviour and the ability to produce asexual spores. We have sequenced the genomes of one strain of S. sclerotiorum and two strains of B. cinerea. The comparative analysis of these genomes relative to one another and to other sequenced fungal genomes is provided here. Their 38-39 Mb genomes include 11,860-14,270 predicted genes, which share 83% amino acid identity on average between the two species. We have mapped the S. sclerotiorum assembly to 16 chromosomes and found large-scale co-linearity with the B. cinerea genomes. Seven percent of the S. sclerotiorum genome comprises transposable elements compared to ,1% of B. cinerea. The arsenal of genes associated with necrotrophic processes is similar between the species, including genes involved in plant cell wall degradation and oxalic acid production. Analysis of secondary metabolism gene clusters revealed an expansion in number and diversity of B. cinerea-specific secondary metabolites relative to S. sclerotiorum. The potential diversity in secondary metabolism might be involved in adaptation to specific ecological niches. Comparative genome analysis revealed the basis of differing sexual mating compatibility systems between S. sclerotiorum and B. cinerea. The organization of the mating-type loci differs, and their structures provide evidence for the evolution of heterothallism from homothallism. These data shed light on the evolutionary and mechanistic bases of the genetically complex traits of necrotrophic pathogenicity and sexual mating. This resource should facilitate the functional studies designed to better understand what makes these fungi such successful and persistent pathogens of agronomic crops.

855 citations


Network Information
Related Topics (5)
Plant disease resistance
12.9K papers, 381.8K citations
86% related
Pseudomonas syringae
4.8K papers, 231.1K citations
84% related
Plant virus
13.4K papers, 306.7K citations
83% related
Aphid
11.3K papers, 229.7K citations
81% related
Cultivar
19.5K papers, 233.5K citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023119
2022286
2021172
2020183
2019176
2018159