scispace - formally typeset
Search or ask a question
Topic

Sea breeze

About: Sea breeze is a research topic. Over the lifetime, 2544 publications have been published within this topic receiving 55651 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the authors identify the location of an ideal offshore wind energy (OWE) grid on the U.S. East Coast using hourly, high-resolution mesoscale weather model data from 2006-2010.
Abstract: This paper identifies the location of an “ideal” offshore wind energy (OWE) grid on the U.S. East Coast. The ideal location would provide the highest overall and peak-time summer capacity factor, use bottom-mounted turbine foundations (depth ≤50 m), connect regional transmissions grids from New England to the Mid-Atlantic, and finally, have a smoothed power output, reduced hourly ramp rates and hours of zero power. Hourly, high-resolution mesoscale weather model data from 2006–2010 were used to approximate wind farm output. The offshore grid was located in the waters from Long Island, New York to the Georges Bank, ≈450 km east. Twelve candidate 500 MW wind farms were located randomly throughout that region. Four wind farms (2000 MW total capacity) were selected for their synergistic meteorological characteristics that reduced offshore grid variability. Sites which were likely to have sea breezes helped increase the grid capacity factor during peak time in the spring and summer months. Sites far offshore, dominated by powerful synoptic-scale storms, were included for their generally higher but more variable power output. By interconnecting all 4 farms via an offshore grid versus 4 individual interconnections, power was smoothed, the no-power events were reduced from 9% to 4%, and the combined capacity factor was 48% (gross). By interconnecting offshore wind energy farms ≈450 km apart, in regions with offshore wind energy resources driven by both synoptic-scale storms and mesoscale sea breezes, substantial reductions in low/no-power hours and hourly ramp rates can be made.

34 citations

Journal ArticleDOI
TL;DR: For example, during weak and downwelling winds, the plume formed a narrow buoyant coastal current that propagated downstream near the internal wave speed and formed a downstream recirculating eddy as mentioned in this paper.
Abstract: Observations of the Hudson River plume were taken in the spring of 2006 in conjunction with the Lagrangian Transport and Transformation Experiment using mooring arrays, shipboard observations, and satellite data. During this time period, the plume was subjected to a variety of wind, buoyant, and shelf forcings, which yield vastly different responses in plume structure including a downstream recirculating eddy. During weak and downwelling winds, the plume formed a narrow buoyant coastal current that propagated downstream near the internal wave speed. Freshwater transport during periods when the downwelling wind was closely aligned with the coast was near the river discharge values. During periods with a cross-shore component to the wind, freshwater transport in the coastal current estimated by the mooring array is less than the river discharge due to a widening of the plume that leads to the internal Rossby radius scaling for the plume width to be invalid. The offshore detachment of plume and formation of a downstream eddy that is observed surprisingly persisted for 2 weeks under a variety of wind forcing conditions. Comparison between mooring, shipboard, and satellite data reveal the downstream eddy is steady in time. Shipboard transects yield a freshwater content equal to the previous 3 days of river discharge. The feature itself was formed due to a large discharge following a strong onshore wind. The plume was then further modified by a brief upwelling wind and currents influenced by the Hudson Shelf Valley. The duration of the detachment and downstream eddy can be explained using a Wedderburn number which is largely consistent with the wind strength index described by Whitney and Garvine (J Geophys Res 110:C03014 1997).

34 citations

Journal ArticleDOI
TL;DR: In this paper, the authors studied the relationship between mesoscale changes in geostrophic winds and low-level jet (LLJ) streams in the region between the Eastern Castilla-La Mancha and the Mediterranean coast of southeastern Spain.
Abstract: Sea breezes and low-level jet (LLJ) streams are studied in the region between the Eastern Castilla-La Mancha and the Mediterranean coast of southeastern Spain. The simplified concept of two-dimensional terrain and meteorological conditions explains the spatially and diurnally varying wind system consistently. The changes, as a function of time, height and distance to the coast, of temperature, pressure and wind as well as of certain observed phenomena, such as LLJs and strongly baroclinic zones, result from the response of the mesoscale flow to differential heating. Wind changes are generally found to be consistent with mesoscale changes in geostrophic winds as estimated from station pressure measurements. The LLJs mark the penetration depth of the sea breeze during daytime, where a baroclinic zone develops at the transition between continental air masses and marine air masses, typically at a distance of 150 km from the coast. The analysis is based on aerological data and ground-based measurements from the European Field Experiment in a Desertification Threatened Area (EFEDA) experiments in 1991 and 1994 as well as on 3-hourly data from three synoptic stations of the Spanish meteorological network for April–October in 1991 and 1994. After corrections were made for instrument errors and atmospheric tides, diurnal pressure variations document vertically integrated mass fluxes perpendicular to the coast. Amplitudes of diurnal pressure and temperature changes scatter significantly and are largest in midsummer. They are weakly correlated and pressure amplitudes remain large in spring and autumn when diurnal temperature changes are reduced. With about 6 h delay to the regular development of onshore winds at the coast during daytime, pronounced wind peaks are observed over the eastern plateau at Albacete and Barrax in the late afternoon. Case studies show that they are accompanied by development of baroclinically driven LLJs, whereas winds at Tomelloso, 220-km inland, show less pronounced diurnal changes and are beyond the normal penetration distance of sea breezes. Copyright © 2000 Royal Meteorological Society

34 citations

Journal ArticleDOI
TL;DR: In this article, the suspended particulate matter (SPM) measured on a seasonal cycle in the Mandovi Estuary, Goa indicate that the average concentrations of SPM at the regular station are ∼20mg/l, 5mg/lp, 19mg/LP and 5 mg/lp for June-September, October-January, February-April and May, respectively.
Abstract: Systematic studies on the suspended particulate matter (SPM) measured on a seasonal cycle in the Mandovi Estuary, Goa indicate that the average concentrations of SPM at the regular station are ∼20mg/l, 5mg/l, 19mg/l and 5mg/l for June–September, October–January, February–April and May, respectively. SPM exhibits low-to-moderate correlation with rainfall indicating that SPM is also influenced by other processes. Transect stations reveal that the SPM at sea-end stations of the estuary are at least two orders of magnitude greater than those at the river-end during the monsoon. Estuarine turbidity maximum (ETM) of nearly similar magnitude occurs at the same location in two periods, interrupted by a period with very low SPM concentrations. The ETM occurring in June–September is associated with low salinities; its formation is attributed to the interactions between strong southwesterly winds (5.1–5.6ms−1) and wind-induced waves and tidal currents and, dominant easterly river flow at the mouth of the estuary. The ETM occurring in February–April is associated with high salinity and is conspicuous. The strong NW and SW winds (3.2–3.7ms−1) and wind-driven waves and currents seem to have acted effectively at the mouth of the estuary in developing turbidity maximum. The impact of sea breeze appears nearly same as that of trade winds and cannot be underestimated in sediment resuspension and deposition

34 citations

01 Sep 2001
TL;DR: The wind energy resource atlas of Southeast Asia as discussed by the authors covers four countries: Cambodia, Laos, Thailand, and Vietnam, and uses a dynamical mesoscale weather model to simulate historical wind and weather conditions for a representative sample of days from 1984 to 1998.
Abstract: The Wind Energy Resource Atlas of Southeast Asia covers four countries: Cambodia, Laos, Thailand, and Vietnam. The purpose of the atlas is to facilitate the development of wind energy both for utility-scale generation and for village power and other off-grid applications. Potential users of the atlas include government officials, international lending agencies and development institutions, and private developers. The atlas was made possible by the development in the past three years of a sophisticated new wind mapping system called MesoMap. This system uses a dynamical mesoscale weather model to simulate historical wind and weather conditions for a representative sample of days from 1984 to 1998. The data inputs include terrain elevations, land cover, and vegetation greenness on a 1 km grid scale, as well as meteorological data such as gridded reanalysis weather data, rawinsonde data, and sea surface temperature measurements. The results of the simulations are presented as color-coded maps of mean wind speed and wind power density, both annual and seasonal, and tabulated frequency distributions and wind rose charts.

34 citations


Network Information
Related Topics (5)
Precipitation
32.8K papers, 990.4K citations
85% related
Climate model
22.2K papers, 1.1M citations
85% related
Wind speed
48.3K papers, 830.4K citations
83% related
Sea surface temperature
21.2K papers, 874.7K citations
82% related
Atmosphere
30.8K papers, 737.8K citations
80% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202382
2022190
2021101
202087
201978
201877