scispace - formally typeset
Search or ask a question
Topic

SeaWiFS

About: SeaWiFS is a research topic. Over the lifetime, 1866 publications have been published within this topic receiving 71267 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, a large data set containing coincident in situ chlorophyll and remote sensing reflectance measurements was used to evaluate the accuracy, precision, and suitability of a wide variety of ocean color algorithms for use by SeaWiFS (Sea-viewing Wide Field-of-view Sensor).
Abstract: A large data set containing coincident in situ chlorophyll and remote sensing reflectance measurements was used to evaluate the accuracy, precision, and suitability of a wide variety of ocean color chlorophyll algorithms for use by SeaWiFS (Sea-viewing Wide Field-of-view Sensor). The radiance-chlorophyll data were assembled from various sources during the SeaWiFS Bio-optical Algorithm Mini-Workshop (SeaBAM) and is composed of 919 stations encompassing chlorophyll concentrations between 0.019 and 32.79 μg L−1. Most of the observations are from Case I nonpolar waters, and ∼20 observations are from more turbid coastal waters. A variety of statistical and graphical criteria were used to evaluate the performances of 2 semianalytic and 15 empirical chlorophyll/pigment algorithms subjected to the SeaBAM data. The empirical algorithms generally performed better than the semianalytic. Cubic polynomial formulations were generally superior to other kinds of equations. Empirical algorithms with increasing complexity (number of coefficients and wavebands), were calibrated to the SeaBAM data, and evaluated to illustrate the relative merits of different formulations. The ocean chlorophyll 2 algorithm (OC2), a modified cubic polynomial (MCP) function which uses Rrs490/Rrs555, well simulates the sigmoidal pattern evident between log-transformed radiance ratios and chlorophyll, and has been chosen as the at-launch SeaWiFS operational chlorophyll a algorithm. Improved performance was obtained using the ocean chlorophyll 4 algorithm (OC4), a four-band (443, 490, 510, 555 nm), maximum band ratio formulation. This maximum band ratio (MBR) is a new approach in empirical ocean color algorithms and has the potential advantage of maintaining the highest possible satellite sensor signal: noise ratio over a 3-orders-of-magnitude range in chlorophyll concentration.

2,441 citations

Journal ArticleDOI
TL;DR: This approach demonstrates that the addition of even sparse ground-based measurements to more globally continuous PM2.5 data sources can yield valuable improvements to PM 2.5 characterization on a global scale.
Abstract: We estimated global fine particulate matter (PM2.5) concentrations using information from satellite-, simulation- and monitor-based sources by applying a Geographically Weighted Regression (GWR) to global geophysically based satellite-derived PM2.5 estimates. Aerosol optical depth from multiple satellite products (MISR, MODIS Dark Target, MODIS and SeaWiFS Deep Blue, and MODIS MAIAC) was combined with simulation (GEOS-Chem) based upon their relative uncertainties as determined using ground-based sun photometer (AERONET) observations for 1998-2014. The GWR predictors included simulated aerosol composition and land use information. The resultant PM2.5 estimates were highly consistent (R(2) = 0.81) with out-of-sample cross-validated PM2.5 concentrations from monitors. The global population-weighted annual average PM2.5 concentrations were 3-fold higher than the 10 μg/m(3) WHO guideline, driven by exposures in Asian and African regions. Estimates in regions with high contributions from mineral dust were associated with higher uncertainty, resulting from both sparse ground-based monitoring, and challenging conditions for retrieval and simulation. This approach demonstrates that the addition of even sparse ground-based measurements to more globally continuous PM2.5 data sources can yield valuable improvements to PM2.5 characterization on a global scale.

881 citations

Journal ArticleDOI
TL;DR: The NASA Ocean Biology Processing Group's (OBPG) method for validating satellite ocean color data products using in situ measurements as ground truth is described in this article, where the results indicate that for the majority of the global ocean, SeaWiFS data approach the target uncertainties of ± 5% for clear water radiances as defined prior to launch.

766 citations

Journal ArticleDOI
TL;DR: A 9-year time series of SeaWiFS remotely-sensed ocean color data is used to examine temporal trends in the ocean's most oligotrophic waters, those with surface chlorophyll not exceeding 0.07 mg chl/m3 as mentioned in this paper.
Abstract: [1] A 9-year time series of SeaWiFS remotely-sensed ocean color data is used to examine temporal trends in the ocean's most oligotrophic waters, those with surface chlorophyll not exceeding 0.07 mg chl/m3. In the North and South Pacific, North and South Atlantic, outside the equatorial zone, the areas of low surface chlorophyll waters have expanded at average annual rates from 0.8 to 4.3%/yr and replaced about 0.8 million km2/yr of higher surface chlorophyll habitat with low surface chlorophyll water. It is estimated that the low surface chlorophyll areas in these oceans combined have expanded by 6.6 million km2 or by about 15.0% from 1998 through 2006. In both hemispheres, evidence shows a more rapid expansion of the low surface chlorophyll waters during the winter. The North Atlantic, which has the smallest oligotrophic gyre is expanding most rapidly, both annually at 4.3%/yr and seasonally, in the first quarter at 8.5%/yr. Mean sea surface temperature in each of these 4 subtropical gyres also increased over the 9-year period. The expansion of the low chlorophyll waters is consistent with global warming scenarios based on increased vertical stratification in the mid-latitudes, but the rates of expansion we observe already greatly exceed recent model predictions.

698 citations

Journal ArticleDOI
TL;DR: In this paper, the basic concepts of atmospheric correction over the oceans and details of the algorithms currently being developed for SeaWiFS, MODIS, and MISR are reviewed and an alternate correction algorithm that could be of significant value in the coastal zone is described.
Abstract: Sensors that can be used for the observation of ocean color in NASA's Earth Observing System era (SeaWiFS, MODIS, and MISR) have been designed with 2–4 times the radiometric sensitivity of the proof-of-concept ocean color instrument CZCS (coastal zone color scanner). To realize an improvement in the retrieval of biologically important ocean parameters, e.g., the concentration of the photosynthetic pigment chlorophyll a, from this increased sensitivity, significantly better atmospheric correction than was applied to CZCS is required. Atmospheric correction improvement necessitates the inclusion of the effects of multiple scattering, which are strongly dependent on the aerosol size distribution, concentration, and absorption properties. We review the basic concepts of atmospheric correction over the oceans and provide the details of the algorithms currently being developed for SeaWiFS, MODIS, and MISR. An alternate correction algorithm that could be of significant value in the coastal zone is described for MISR. Related issues such as the influence of aerosol vertical structure in the troposphere, polarization of the light field, sea surface roughness, and oceanic whitecaps on the sea surface are evaluated and plans for their inclusion in the algorithm are described. Unresolved issues, such as the presence of stratospheric aerosol, the appropriateness of the aerosol models used in the assessment of multiple scattering, and the identification of, and difficulties associated with the correction for, the presence of absorbing aerosols, e.g., urban pollution or mineral dust, are identified, and suggestions are provided for their resolution.

689 citations


Network Information
Related Topics (5)
Sea surface temperature
21.2K papers, 874.7K citations
86% related
Sea ice
24.3K papers, 876.6K citations
84% related
Phytoplankton
24.6K papers, 930.1K citations
82% related
Climate model
22.2K papers, 1.1M citations
76% related
Benthic zone
23.1K papers, 763.9K citations
76% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202320
202244
20219
20205
201928
201825