scispace - formally typeset

Topic

Seedling

About: Seedling is a(n) research topic. Over the lifetime, 28687 publication(s) have been published within this topic receiving 478292 citation(s).


Papers
More filters
Book
31 Jul 1994
TL;DR: Seeds: Germination, Structure, and Composition; Development-Regulation and Maturation; Mobilization of Stored Seed Reserves; and some Ecophysiological Aspects.
Abstract: Seeds: Germination, Structure, and Composition. Seed Development and Maturation. Development-Regulation and Maturation. Cellular Events during Germination and Seedling Growth. Dormancy and the Control of Germination. Some Ecophysiological Aspects of Germination. Mobilization of Stored Seed Reserves. Control of the Mobilization of Stored Reserves. Seeds and Germination: Some Agricultural and Industrial Aspects. Index.

3,402 citations

01 Jan 2000
TL;DR: Reproductive allocation and reproductive effort in plants, F.A. Bazzaz and D.D. Gutterman the ecology of seed dispersal, M.F. Wilson animals as seed dispersers, E.W. Stiles fruits and frugivory, P.H. Thompson seed responses to light, T.L. Crawley longevity, viability and dormancy.
Abstract: Reproductive allocation and reproductive effort in plants, F.A. Bazzaz and D.D. Ackerly maternal effects on seeds during development, Y. Gutterman the ecology of seed dispersal, M.F. Wilson animals as seed dispersers, E.W. Stiles fruits and frugivory, P. Jordano seed predators and plant population dynamics, M.J. Crawley longevity, viability and dormancy, A.J. Murdoch and R.H. Ellis the functional ecology of seed banks, K. Thompson seed responses to light, T.L. Pons the role of temperature in germination ecophysiology, R.J. Probert effect of chemical environment on seed germination, C.M. Karssen and H.W.M. Hilhorst the contribution of seedling regeneration to the structure and dynamics of plant communities and larger units of landscape, J.P. Grime and S.H. Hillier.

1,559 citations

Journal ArticleDOI
TL;DR: Plants are adapted to these severe environments by employing combinations of the following general characteristics: low‐temperature metabolism, frost resistance, and the environmental cues and requirements for flowering, dormancy, regrowth, and germination.
Abstract: Summary ‘How are plants adapted to the low temperatures and other stresses of arctic and alpine environments ?’ At present it is not possible to answer this question completely. Much work remains to be done, particularly on low-temperature metabolism, frost resistance, and the environmental cues and requirements for flowering, dormancy, regrowth, and germination. However, in brief, we can say that plants are adapted to these severe environments by employing combinations of the following general characteristics: 1. Life form: perennial herb, prostrate shrub, or lichen. Perennial herbs have greatest part of biomass underground. 2. Seed dormancy: generally controlled by environment; seeds can remain dormant for long periods of time at low temperatures since they require temperatures well above freezing for germination. 3. Seedling establishment: rare and very slow; it is often several years before a seedling is safely established. 4. Chlorophyll content: in both alpine and arctic ecosystems not greatly different on a land-area basis from that in temperate herbaceous communities. Within a single species there is more chlorophyll in leaves of arctic populations than in those of alpine populations. 5. Photosynthesis and respiration: (a) These are at high rates for only a few weeks when temperatures and light are favourable. (b) Optimum photosynthesis rates are at lower temperatures than for ordinary plants; rates are both genetically and environmentally controlled with phenotypic plasticity very marked. (c) Dark respiration is higher at all temperatures than for ordinary plants; rate is both genetically and environmentally controlled, with phenotypic plasticity very pronounced, i.e. low-temperature environment increases the rate at all temperatures. (d) Alpine plants have higher light-saturation values in photosynthesis than do arctic or lowland plants; light saturation closely tied to temperature. (e) There is some evidence that alpine plants can carry on photosynthesis at lower carbon dioxide concentrations than can other plants. (f) Annual productivity is low, but daily productivity during growing season can be as high as that of most temperate herbaceous vegetation. Productivity can be increased by temperature, nutrients, or water. 6. Drought resistance: most drought stress in winter in exposed sites is due to frozen soils and dry winds. It is met by decreased water potentials, higher concentrations of soluble carbohydrates, and closed stomates. Little drought resistance in snowbank plants. Alpine plants adapted to summer drought stress can carry on photosynthesis at low water potentials; alpine or arctic plants of moist sites cannot do this. 7. Breaking of dormancy: controlled by mean temperatures near or above 0° C., and in some cases by photoperiod also. 8. Growth: very rapid even at low positive temperatures. Respiration greatly exceeds photosynthesis in early re-growth of perennials. Internal photosynthesis may occur in hollow stems of larger plants during early growth. Nitrogen and phosphorus often limiting in cold soil. 9. Food storage: characteristic of all alpine and arctic plants except annuals. Carbohydrates mostly stored underground in herbaceous perennials. Lipids in old leaves and stems of prostrate evergreen shrubs. Depleted in early growth, and usually restored after flowering. 10. Winter survival: survival and frost resistance are excellent after hardening. Cold resistance closely tied to content of soluble carbohydrates, particularly raffinose. 11. Flowering: flower buds are pre-formed the year before. Complete development and anthesis dependent upon temperature of the flowering year and also, in some cases, upon photoperiod. 12. Pollination: mostly insect-pollinated in alpine regions and even in Arctic, but to a lesser extent. Wind-pollination increasingly more important with increasing latitude. Diptera more important than bees in the Arctic and in the highest mountains. 13. Seed production: opportunistic, and dependent upon temperature during flowering period and latter half of growing season. 14. Vegetative reproduction: by rhizomes, bulbils, or layering. More common and important in Arctic than in alpine areas. 15. Onset of dormancy: triggered by photoperiod, low temperatures, and drought. Dormant plant extremely resistant to low temperatures.

977 citations

Journal ArticleDOI
TL;DR: Under constant temperature conditions, the majority of grasses, legumes and composites germinated over a wide range of temperature, and the same feature was evident in species of ubiquitous or southern distribution in the British Isles.
Abstract: seeds for immediate germination. Of the 403 species examined, 158 failed to exceed 10% germination but 128 attained values greater than 80%. Germination was high in the majority of grasses and low in many annual forbs and woody species. With respect to initial germinability, major families could be arranged in the series Gramineae > Compositae > Leguminosae = Cyperaceae > Umbelliferae. Many small-seeded species were able to germinate immediately after collection and seeds of these species were often elongated or conical and had antrorse hairs or teeth on the dispersule. High initial germinability was conspicuous among the species of greatest abundance in the Sheffield flora. (4) In the majority of species, germination percentage increased during dry storage; this effect was most marked in small-seeded species. Among the seventy-five species which responded to chilling, some germinated at low temperature in darkness whilst others were dependent upon subsequent exposure to light or to higher temperature or to both. Responses to chilling were characteristic of the Umbelliferae. In all of the legumes examined, rapid germination to a high percentage was brought about by scarification. (5) Under the experimental conditions, all of the annual grasses showed the potential for rapid germination. High rates were also observed in many of the annual forbs and perennial grasses. Low rates of germination occurred in the majority of sedges, shrubs and trees, and were particularly common in species of northern distribution in Britain. Rapid germination was characteristic of the species of greatest abundance in the Sheffield flora. Rate of germination showed a progressive decline with increasing seed weight, and, with some exceptions, there was a positive correlation between rate of germination and the relative growth rate of the seedling. (6) In sixteen species, germination in the light was found to be dependent upon exposure to diurnal fluctuations in temperature. Under constant temperature conditions, the majority of grasses, legumes and composites germinated over a wide range of temperature, and the same feature was evident in species of ubiquitous or southern distribution in the British Isles. A requirement for relatively high temperature was apparent in sedges, in plants of northern distribution and in a majority of the marsh plants. The range of constant temperatures conducive to germination tended to be wider in grassland plants than in woodland species. Rapid germination over a wide range of temperature occurred in many of the species which attain greatest abundance in the Sheffield flora. 0022-0477/81/1100-1017 $02.00 (?1981 Blackwell Scientific Publications

933 citations


Network Information
Related Topics (5)
Germination

51.9K papers, 877.9K citations

96% related
Shoot

32.1K papers, 693.3K citations

94% related
Soil fertility

33.7K papers, 859.4K citations

89% related
Photosynthesis

19.7K papers, 895.1K citations

87% related
Hordeum vulgare

20.3K papers, 717.5K citations

87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202216
2021821
20201,125
20191,440
20181,602
20171,728