scispace - formally typeset
Search or ask a question

Showing papers on "Seedling published in 2022"


Journal ArticleDOI
Mengyun Liu1
TL;DR: In this article , a pot experiment was performed to determine the efficacy of zinc oxide nanoparticles (ZnO NPs) as a foliar application on the growth performance of cucumber subjected to drought stress.

51 citations


Journal ArticleDOI
10 Jan 2022-Heredity
TL;DR: In this paper , a review of recent advances in the genetic underpinnings of seed performance as well as how climate change is expected to affect vigor in current varieties of staple, vegetable, and other crops.
Abstract: In the coming decades, maintaining a steady food supply for the increasing world population will require high-yielding crop plants which can be productive under increasingly variable conditions. Maintaining high yields will require the successful and uniform establishment of plants in the field under altered environmental conditions. Seed vigor, a complex agronomic trait that includes seed longevity, germination speed, seedling growth, and early stress tolerance, determines the duration and success of this establishment period. Elevated temperature during early seed development can decrease seed size, number, and fertility, delay germination and reduce seed vigor in crops such as cereals, legumes, and vegetable crops. Heat stress in mature seeds can reduce seed vigor in crops such as lettuce, oat, and chickpea. Warming trends and increasing temperature variability can increase seed dormancy and reduce germination rates, especially in crops that require lower temperatures for germination and seedling establishment. To improve seed germination speed and success, much research has focused on selecting quality seeds for replanting, priming seeds before sowing, and breeding varieties with improved seed performance. Recent strides in understanding the genetic basis of variation in seed vigor have used genomics and transcriptomics to identify candidate genes for improving germination, and several studies have explored the potential impact of climate change on the percentage and timing of germination. In this review, we discuss these recent advances in the genetic underpinnings of seed performance as well as how climate change is expected to affect vigor in current varieties of staple, vegetable, and other crops.

50 citations


Journal ArticleDOI
TL;DR: In this article , a maize seedling was subjected to drought stress of 40-45% field capacity (FC) at the five-leaf stage, followed by a soil drenching of melatonin 100 µM and three nitrogen levels (200, 250, and 300 kg ha−1).
Abstract: Melatonin plays an important role in numerous vital life processes of animals and has recently captured the interests of plant biologists because of its potent role in plants. As well as its possible contribution to photoperiodic processes, melatonin is believed to act as a growth regulator and/or as a direct free radical scavenger/indirect antioxidant. However, identifying a precise concentration of melatonin with an optimum nitrogen level for a particular application method to improve plant growth requires identification and clarification. This work establishes inimitable findings by optimizing the application of melatonin with an optimum level of nitrogen, alleviating the detrimental effects of drought stress in maize seedlings. Maize seedlings were subjected to drought stress of 40–45% field capacity (FC) at the five-leaf stage, followed by a soil drenching of melatonin 100 µM and three nitrogen levels (200, 250, and 300 kg ha−1) to consider the changes in maize seedling growth. Our results showed that drought stress significantly inhibited the physiological and biochemical parameters of maize seedlings. However, the application of melatonin with nitrogen remarkably improved the plant growth attributes, chlorophyll pigments, fluorescence, and gas exchange parameters. Moreover, melatonin and nitrogen application profoundly reduced the reactive oxygen species (ROS) accumulation by increasing maize antioxidant and nitrogen metabolism enzyme activities under drought-stress conditions. It was concluded that the mitigating potential of 100 µM melatonin with an optimum level of nitrogen (250 kg N ha−1) improves the plant growth, photosynthetic efficiency, and enzymatic activity of maize seedling under drought-stress conditions.

32 citations


Journal ArticleDOI
TL;DR: In this article , the toxicity of polystyrene (PS), polyethylene (PE), and polypropylene (PP) microplastics with different concentrations (0, 10, 100, 500 and 1000 mg/L) to tomato (Lycopersicon esculentum L.) were studied by a hydroponic experiment.

25 citations


Journal ArticleDOI
TL;DR: In this article , the combination of oxytetracycline and polyethylene microplastic significantly reduced the biomass and height of wheat seedlings, while increasing carotenoid content and peroxidase activity.

24 citations


Journal ArticleDOI
TL;DR: In this paper , the short-term effects of two different concentrations of polystyrene nanoplastics (PSNPs) (0.1 or 1 g L-1 suspensions) on rice seedlings starting from seed germination were investigated.

23 citations


Journal ArticleDOI
TL;DR: In this paper , the authors investigated the possible response of variable concentrations of hydrogen peroxide (H2O2) on germination and morphological traits of in vitro-grown hemp seedlings by using ML algorithms.

22 citations


Journal ArticleDOI
05 Feb 2022-Agronomy
TL;DR: In this paper , the authors determined maize seeds' germination and seedling development under various abiotic stresses, including drought and waterlogging, using 30 water levels based on one-milliliter intervals and as percentages of thousand kernel weight (TKW) at 20 and 25 °C.
Abstract: Germination and seedling development are essential stages in a plant’s life cycle, greatly influenced by temperature and moisture conditions. The aim of this study was to determine maize (Zea mays L.) seeds’ germination and seedling development under various abiotic stresses. Eight different temperature levels, 5, 10, 15, 20, 25, 30, 35, and 40 °C, were used. Drought and waterlogging stresses were tested using 30 water levels based on one-milliliter intervals and as percentages of thousand kernel weight (TKW) at 20 and 25 °C. Seedling density and the use of antifungals were also examined. Temperature significantly affected germination duration and seedling growth, and 20 °C was found to be ideal with an optimal range of less than 30 °C. Germination occurred at 25% of the TKW. The optimal water range for seedling growth was higher and broader than the range for germination. Seed size assisted in defining germination water requirements and providing an accurate basis. The present research established an optimum water supply range of 150–325% of the TKW for maize seedling development. A total of 6 seeds per 9 cm Petri dish may be preferable over greater densities. The technique of priming seeds with an antifungal solution before planting was observed to have a better effect than applying it in the growth media.

20 citations



Journal ArticleDOI
TL;DR: Zhang et al. as discussed by the authors investigated the molecular mechanism of salinity tolerance in rapeseed and found that the activities of superoxide dismutase, catalase, and ascorbate peroxidase were increased in the salt-tolerant (Yangyou9; YY9) cultivar as compared with the salt sensitive one (Zhongshuang11; ZS11).

19 citations


Journal ArticleDOI
TL;DR: Wang et al. as discussed by the authors proposed an efficient and fast real-time peanut video counting model (combining the improved YOLOV5s, DeepSort, and OpenCV programs) to accurately distinguish peanut seedlings from weeds, and to count peanuts seedlings based on videos.

Journal ArticleDOI
TL;DR: Zhang et al. as discussed by the authors used a novel method to detect the survival rate of rape seedlings at multiple growth stages in the plant factory, which can not only improve the space utilization of plant factories, but also help increase crop yields.

Journal ArticleDOI
TL;DR: In this paper , the role of DOG1 and abscisic acid in seed dormancy is discussed and an update on the present understanding of the role is provided, along with a review of the current state of the art.
Abstract: Seed dormancy-the absence of seed germination under favorable germination conditions-is a plant trait that evolved to enhance seedling survival by avoiding germination under unsuitable environmental conditions. In Arabidopsis, dormancy levels are influenced by the seed coat composition, while the endosperm is essential to repress seed germination of dormant seeds upon their imbibition. Recent research has shown that the mother plant modulates its progeny seed dormancy in response to seasonal temperature changes by changing specific aspects of seed coat and endosperm development. This process involves genomic imprinting by means of epigenetic marks deposited in the seed progeny and regulators previously known to regulate flowering time. This review discusses and summarizes these discoveries and provides an update on our present understanding of the role of DOG1 and abscisic acid, two key contributors to dormancy. Expected final online publication date for the Annual Review of Plant Biology, Volume 73 is May 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

Journal ArticleDOI
TL;DR: In this article , the potential of hydrogen sulphide (H2 S) to mitigate toxicity caused by Cadmium (Cd) in fenugreek seedlings (Trigonella foenum-graecum L.).
Abstract: Cadmium (Cd) toxicity reduces growth and yield of crops grown in metal-polluted sites. Research was conducted to estimate the potential of hydrogen sulphide (H2 S) to mitigate toxicity caused by Cd in fenugreek seedlings (Trigonella foenum-graecum L.). Different concentrations of CdCl2 (Cd1-1 mM, Cd2-1.5 mM, Cd3-2mM) and H2 S (HS1-100 µM, HS2-150 µM, HS3-200 µM) were assessed. Seeds of fenugreek were primed with sodium hydrosulphide (NaHS), as H2 S donor. Seedlings growing in Cd-spiked media treated with H2 S were harvested after 2 weeks. Cd stress affected growth of fenugreek seedlings. Cd toxicity decreased leaf relative water content (LRWC), intercellular CO2 concentration, net photosynthesis, stomatal conductance and transpiration. However, application of H2 S significantly improved seedling morphological attributes by increasing the activity of antioxidant enzymes, i.e. APX, CAT and SOD, in Cd-contaminated soil. H2 S treatment also regulated phenolic and flavonoid content. H2 S-induced biosynthesis of spermidine (Spd) and putrescine (Put) could account for the enhancement of growth and physiological performance of fenugreek seedlings under Cd stress. H2 S treatment also reduced H2 O2 production (38%) and electrolyte leakage (EL, 51%) in seedlings grown in different concentrations of Cd. It is recommended to evaluate the efficacy of H2 S in alleviating Cd toxicity in other crop plants.


Journal ArticleDOI
23 Mar 2022-Plants
TL;DR: This review focuses on the biochemical and physiological processes in seeds and plants affected by seed treatment with NTP and the resulting impact on plant metabolism, growth, adaptability and productivity.
Abstract: Among the innovative technologies being elaborated for sustainable agriculture, one of the most rapidly developing fields relies on the positive effects of non-thermal plasma (NTP) treatment on the agronomic performance of plants. A large number of recent publications have indicated that NTP effects are far more persistent and complex than it was supposed before. Knowledge of the molecular basis and the resulting outcomes of seed treatment with NTP is rapidly accumulating and requires to be analyzed and presented in a systematic way. This review focuses on the biochemical and physiological processes in seeds and plants affected by seed treatment with NTP and the resulting impact on plant metabolism, growth, adaptability and productivity. Wide-scale changes evolving at the epigenomic, transcriptomic, proteomic and metabolic levels are triggered by seed irradiation with NTP and contribute to changes in germination, early seedling growth, phytohormone amounts, metabolic and defense enzyme activity, secondary metabolism, photosynthesis, adaptability to biotic and abiotic stress, microbiome composition, and increased plant fitness, productivity and growth on a longer time scale. This review highlights the importance of these novel findings, as well as unresolved issues that remain to be investigated.

Journal ArticleDOI
TL;DR: In this paper , the effects of straw return coupled with deep nitrogen (N) fertilization on grain yield and N use efficiency in mechanical pot-seedling transplanting (MPST) rice were assessed.

Journal ArticleDOI
01 Mar 2022-Plants
TL;DR: In this article , the authors investigated the differences in drought resistance of four Chinese oak species at the seedling stage, and comprehensively evaluated their drought resistance capabilities using principal component analysis (PCA).
Abstract: Quercus fabri Hance, Quercus serrata Thunb, Quercus acutissima Carruth, and Quercus variabilis BL are four Chinese oak species commonly used for forestation. To ensure the survival of seedlings, we first need to understand the differences in drought resistance of the four oak species at the seedling stage, and comprehensively evaluate their drought resistance capabilities. The four oak seedlings were divided into drought-rewatering treatment group and well watered samples (control group). For the seedlings of the drought-rewatering treatment group, drought stress lasting 31 days was used, and then re-watering for 5 days. The water parameters, osmotic solutes content, antioxidant enzyme activity and photosynthesis parameters of the seedlings in the two groups were measured every 5 days. Compared with the control group, the relative water content, water potential, net photosynthetic rate, transpiration rate, and stomatal conductance levels of the four oaks all showed a downward trend under continuous drought stress, and showed an upward trend after rehydration. The soluble protein, soluble sugar, proline, peroxidase, superoxide dismutase and catalase content of the four oaks increased first and then decreased under drought stress, and then increased after rehydration. The content of glycine betaine and malondialdehyde continued to increase, and gradually decreased after rehydration. The weight of each index was calculated by principal component analysis, and then the comprehensive evaluation of each index was carried out through the membership function method. The drought resistance levels of the four oak species were as follows: Q. serrata > Q. fabri > Q. variabilis > Q. acutissima.

Journal ArticleDOI
Yanyu Bao1, Chengrong Pan1, Dezheng Li1, Aiyun Guo1, Fengbin Dai 
TL;DR: Xiaoyan et al. as discussed by the authors investigated the effects of individual and combined exposure of wheat (Triticum aestivum L.) to oxytetracycline (OTC) and polyethylene (PE) microplastics using physiological and metabolic profilings.

Journal ArticleDOI
TL;DR: Xiaoyan et al. as mentioned in this paper investigated the effects of individual and combined exposure of wheat (Triticum aestivum L.) to oxytetracycline (OTC) and polyethylene (PE) microplastics using physiological and metabolic profilings.

Journal ArticleDOI
TL;DR: In this article , a small molecule indole hormone called Melatonin (MT) was used to promote the normal development of wheat seedlings under salt stress by mediating physiological regulation mechanisms, but the physiological mechanism of exogenous MT regulating seed germination and seedling growth of wheat under salt stressed is still unclear.
Abstract: Melatonin (MT) is a small molecule indole hormone that plays an important role in the regulation of biological processes and abiotic stress resistance. Previous studies have confirmed that MT promotes the normal development of plants under stress by mediating physiological regulation mechanisms. However, the physiological mechanism of exogenous MT regulating seed germination and seedling growth of wheat under salt stress is still unclear. In this study, NaCl stress decreased germination rate and inhibited seedling growth of wheat, but shoot length, root length, and plant weight of SM15 did not change significantly. The addition of 300 μM MT in the cultivation solution directly promoted the germination rate of SM15 and ZM18, and lateral root production, but decreased the germination rate of JM22 and inhibited the length of germ and radicle of three varieties under salt stress. For wheat seedling, application of MT could increase proline content, soluble protein, soluble sugar, Ca2+ content, and vital amino acid content in leaves to keep high water content, low level of H2O2 content, and low [K+]/[Na+] ratio. MT increased root vigor and [K+]/[Na+] ratio and decreased H2O2 content in root induced by salt stress. In conclusion, MT enhanced salt tolerance in wheat seeds and seedlings by regulating the synthesis of soluble protein and sugar, ion compartmentation in roots and leaves, enhancement of enzymatic systems, and changes in amino acid levels. Salt resistance varied with different varieties under the same environmental condition. SM15 was a higher salt-resistant variety and JM22 was a salt-sensitive one. In wheat production, the application of exogenous MT should consider the differences among varieties of wheat during the sowing and seedling stages.

Journal ArticleDOI
TL;DR: In this paper , the role of an APETALA2 (AP2)-type transcription factor, SALT AND ABA RESPONSE ERF1 (OsSAE1), as a positive regulator of seed germination and salt tolerance in rice by repressing the expression of ABSCISIC ACID-INSENSITIVE5 (OsABI5).
Abstract: Rice (Oryza sativa) germination and seedling establishment, particularly in increasingly saline soils, are critical to ensure successful crop yields. Seed vigor, which determines germination and seedling growth, is a complex trait affected by exogenous (environmental) and endogenous (hormonal) factors. Here, we used genetic and biochemical analyses to uncover the role of an APETALA2 (AP2)-type transcription factor, SALT AND ABA RESPONSE ERF1 (OsSAE1), as a positive regulator of seed germination and salt tolerance in rice by repressing the expression of ABSCISIC ACID-INSENSITIVE5 (OsABI5). ossae1 knockout lines exhibited delayed seed germination, enhanced sensitivity to abscisic acid (ABA) during germination and in early seedling growth, and reduced seedling salt tolerance. OsSAE1 overexpression lines exhibited the converse phenotype, with increased seed germination and salt tolerance. In vivo and in vitro assays indicated that OsSAE1 binds directly to the promoter of OsABI5, a major downstream component of the ABA signaling pathway and acts as a major regulator of seed germination and stress response. Genetic analyses revealed that OsABI5-mediated ABA signaling functions downstream of OsSAE1. This study provides important insights into OsSAE1 regulation of seed vigor and salt tolerance and facilitates the practical use of OsSAE1 in breeding salt-tolerant varieties suitable for direct seeding cultivation.

Journal ArticleDOI
26 Feb 2022-Agronomy
TL;DR: In this paper , a comparative analysis of 24 rapeseed cultivars was performed to better understand the performance and predict the adaptative mechanisms of drought-tolerant and drought-sensitive cultivars based on germination and morphophysiological traits during the early seedling stage using PEG-6000 simulated drought conditions.
Abstract: Rapeseed is a valuable oil crop due to its high nutritious value and ample oil content. The current study provides a comparative analysis of 24 cultivars to better understand the performance and predict the adaptative mechanisms of drought-tolerant and drought-sensitive cultivars based on germination and morphophysiological traits during the early seedling stage using PEG-6000 simulated drought conditions. JYZ 158 and FY 520 (tolerant cultivars) and YG 2009 and NZ 1838 (sensitive cultivars) were selected to further explore the role of osmolytes and enzymatic activity in improving drought tolerance. This investigation illustrated that drought stress negatively influenced all studied cultivars; however, the degree of influence was different for each cultivar, suggesting their different potential for drought tolerance. Moreover, enzymatic and osmoregulatory mechanisms were highly efficient in tolerant cultivars compared to sensitive cultivars. Additionally, tolerant cultivars showed higher chlorophyll and lower malondialdehyde (MDA) contents versus sensitive cultivars under drought stress conditions. Higher drought tolerance coincided with higher enzymatic activity and osmolyte content. This work showed that JYZ 158 and FY 520 cultivars had higher drought tolerance, and might be a significant germplasm resource for breeding programs developing drought-tolerant rapeseed.

Journal ArticleDOI
TL;DR: In this paper , the role of Jasmonic acid (JA) in mediating rice Cd tolerance was investigated via a fluorescent probe in vivo localization, Fourier Transform Infrared Spectroscopy (FTIR), and colorimetry.

Journal ArticleDOI
Jingchun Tang1
TL;DR: In this article , a pot-experiment was conducted to investigate the effects of multiple types of microplastics, including polystyrene beads: M1, 5 μm, M2, 70 nm and degradable mulching film (DMF) fragments on growth of wheat seedlings and associated rhizosphere microbial community.

Journal ArticleDOI
19 Jan 2022-Plants
TL;DR: In this article , the authors highlight the most significant results obtained for wheat, maize, rice, soybean, canola, sunflower, tomato, and other horticultural species.
Abstract: Seed quality is an important aspect of the modern cultivation strategies since uniform germination and high seedling vigor contribute to successful establishment and crop performance. To enhance germination, beneficial microbes belonging to arbuscular mycorrhizal fungi, Trichoderma spp., rhizobia and other bacteria can be applied to seeds before sowing via coating or priming treatments. Their presence establishes early relationships with plants, leading to biostimulant effects such as plant-growth enhancement, increased nutrient uptake, and improved plant resilience to abiotic stress. This review aims to highlight the most significant results obtained for wheat, maize, rice, soybean, canola, sunflower, tomato, and other horticultural species. Beneficial microorganism treatments increased plant germination, seedling vigor, and biomass, as well as overcoming seed-related limitations (such as abiotic stress), both during and after emergence. The results are generally positive, but variable, so more scientific information needs to be acquired for different crops and cultivation techniques, with considerations to different beneficial microbes (species and strains) and under variable climate conditions to understand the effects of seed treatments.

Journal ArticleDOI
TL;DR: In this paper, the authors used pak choi as their research material because it is a popular vegetable in Asia, and as a leafy vegetable, it accumulates higher Cd level than other types of vegetable.

Journal ArticleDOI
TL;DR: In this article , the effect of bioSeNPs on growth and physiochemical attributes, and selenium detoxification pathways compared to sodium selenite (Se (IV)) during the early seedling stage under normal and salt stress conditions.
Abstract: Selenium nanoparticles (SeNPs) have attracted considerable attention globally due to their significant potential for alleviating abiotic stresses in plants. Accordingly, further research has been conducted to develop nanoparticles using chemical ways. However, our knowledge about the potential benefit or phytotoxicity of bioSeNPs in rapeseed is still unclear. Herein, we investigated the effect of bioSeNPs on growth and physiochemical attributes, and selenium detoxification pathways compared to sodium selenite (Se (IV)) during the early seedling stage under normal and salt stress conditions. Our findings showed that the range between optimal and toxic levels of bioSeNPs was wider than Se (IV), which increased the plant's ability to reduce salinity-induced oxidative stress. BioSeNPs improved the phenotypic characteristics of rapeseed seedlings without the sign of toxicity, markedly elevated germination, growth, photosynthetic efficiency and osmolyte accumulation versus Se (IV) under normal and salt stress conditions. In addition to modulation of Na+ and K+ uptake, bioSeNPs minimized the ROS level and MDA content by activating the antioxidant enzymes engaged in ROS detoxification by regulating these enzyme-related genes expression patterns. Importantly, the main effect of bioSeNPs and Se (IV) on plant growth appeared to be correlated with the change in the expression levels of Se-related genes. Our qRT-PCR results revealed that the genes involved in Se detoxification in root tissue were upregulated upon Se (IV) treated seedlings compared to NPs, indicating that bioSeNPs have a slightly toxic effect under higher concentrations. Furthermore, bioSeNPs might improve lateral root production by increasing the expression level of LBD16. Taken together, transamination and selenation were more functional methods of Se detoxification and proposed different degradation pathways that synthesized malformed or deformed selenoproteins, which provided essential mechanisms to increase Se tolerance at higher concentrations in rapeseed seedlings. Current findings could add more knowledge regarding the mechanisms underlying bioSeNPs induced plant growth.

Journal ArticleDOI
TL;DR: The microsatellite marker "RM5635" linked to MSQTL4.2 (~295kb) was able to clearly differentiate contrasting genotypes for seedling stage salinity tolerance, whereas at the reproductive stage, none of the markers were able to validate the predicted Meta-QTL for salinityolerance.
Abstract: Identification of concurrent genomic regions contributing tolerance to salinity at the seedling and reproductive stages were done using 45 QTL mapping studies reporting 915 individual QTLs. The QTL-data were used to perform a meta-analysis to predict, validate and analyze the Meta-QTLs governing component traits contributing to salinity tolerance. We predicted a total of 65 and 49 Meta-QTLs distributed across the genome governing seedling and reproductive stage salinity tolerance, respectively. Salinity stress (EC ~ 10.0 dSm-1 ) was evaluated in a set of 32 genotypes grown hydroponically, from these eight extreme (highly tolerant and highly susceptible) genotypes were selected for validation of significant Meta-QTLs. Another set of eight previously known and reported (highly tolerant and highly susceptible) genotypes were evaluated under saline micro plot conditions (EC ~ 8.0 dSm-1 ) and used for validation of significant Meta-QTLs for reproductive stage salinity tolerance. The microsatellite marker "RM5635" linked to MSQTL4.2 (~295.43kb) was able to clearly differentiate contrasting genotypes for seedling stage salinity tolerance, whereas at the reproductive stage, none of the markers were able to validate the predicted Meta-QTL for salinity tolerance. Earlier reported, gene expression studies were used for candidate gene analysis of validated MSQTL4.2, which indicated the down regulation of Os04g0423100, a gene encoding Mono-oxygenase-FAD binding domain containing protein. The traits associated with this Meta-QTL were root and shoot sodium and potassium concentration and leaf chlorophyll content. The identified and validated genomic region assumes a great significant role in seedling stage salinity tolerance in rice, and it can be used for marker-assisted backcross breeding programmes.

Journal ArticleDOI
11 Feb 2022-PLOS ONE
TL;DR: In this article , the authors evaluated seed germination and seedling growth of eight wheat genotypes under polyethylene glycol (PEG)-induced stress and found that the genotype "J4" better tolerated increasing osmotic potentials compared to the rest of the genotypes included in the study.
Abstract: Wheat is an important crop, used as staple food in numerous countries around the world. However, wheat productivity is low in the developing world due to several biotic and abiotic stresses, particularly drought stress. Non-availability of drought-tolerant wheat genotypes at different growth stages is the major constraint in improving wheat productivity in the developing world. Therefore, screening/developing drought-tolerant genotypes at different growth stages could improve the productivity of wheat. This study assessed seed germination and seedling growth of eight wheat genotypes under polyethylene glycol (PEG)-induced stress. Two PEG-induced osmotic potentials (i.e., -0.6 and -1.2 MPa) were included in the study along with control (0 MPa). Wheat genotypes included in the study were ‘KLR-16’, ‘B6’, ‘J10’, ‘716’, ‘A12’, ‘Seher’, ‘KTDH-16’, and ‘J4’. Data relating to seed germination percentage, root and shoot length, fresh and dry weight of roots and shoot, root/shoot length ratio and chlorophyll content were recorded. The studied parameters were significantly altered by individual and interactive effects of genotypes and PEG-induced osmotic potentials. Seed germination and growth parameters were reduced by osmotic potentials; however, huge differences were noted among genotypes. A reduction of 32.83 to 53.50% was recorded in seed germination, 24.611 to 47.75% in root length, 37.83 to 53.72% in shoot length, and 53.35 to 65.16% in root fresh weight. The genotypes, ‘J4’, ‘KLR-16’ and ‘KTDH-16’, particularly ‘J4’ better tolerated increasing osmotic potentials compared to the rest of the genotypes included in the study. Principal component analysis segregated these genotypes from the rest of the genotypes included in the study indicated that these can be used in the future studies to improve the drought tolerance of wheat crop. The genotype ‘J4’ can be used as a breeding material to develop drought resistant wheat genotypes.