scispace - formally typeset
Topic

Selective catalytic reduction

About: Selective catalytic reduction is a(n) research topic. Over the lifetime, 10502 publication(s) have been published within this topic receiving 226291 citation(s).


Papers
More filters
Journal ArticleDOI

[...]

TL;DR: In this paper, the open literature concerning chemical and mechanistic aspects of the selective catalytic reduction of NO by ammonia (SCR process) on metal oxide catalysts is reviewed, and the results of spectroscopic studies of the adsorbed surface species, adsorption-desorption measurements, flow reactor and kinetic experiments are analyzed.
Abstract: The open literature concerning chemical and mechanistic aspects of the selective catalytic reduction of NO by ammonia (SCR process) on metal oxide catalysts is reviewed. Catalytic systems based on supported V2O5 (including the industrial TiO2-supported V2O5–WO3 and/or V2O5–MoO3 catalysts) and catalysts containing Fe2O3, CuO, MnOx and CrOx are considered. The results of spectroscopic studies of the adsorbed surface species, adsorption–desorption measurements, flow reactor and kinetic experiments are analyzed. The proposed reaction mechanisms are described and critically discussed. Points of convergence and of disagreement are underlined.

1,758 citations

Journal ArticleDOI

[...]

04 Jul 2003-Science
TL;DR: In this paper, the authors explored the catalytic reduction of dinitrogen by molybdenum complexes that contain the [HIPTN3N]3- ligand.
Abstract: This Account explores the catalytic reduction of dinitrogen by molybdenum complexes that contain the [HIPTN3N]3- ligand ([HIPTN3N]3- = [(HIPTNCH2CH2)3N]3-, where HIPT = 3,5-(2,4,6-i-Pr3C6H2)2C6H3) at room temperature and pressure with protons and electrons. A total of 7−8 equiv of ammonia is formed out of ∼12 possible (depending upon the Mo derivative employed). No hydrazine is formed. Numerous X-ray studies of proposed intermediates in the catalytic cycle suggest that N2 is being reduced at a sterically protected, single Mo center operating in oxidation states between MoIII and MoVI. Subtle variations of the [HIPTN3N]3- ligand are not as successful as a consequence of an unknown shunt in the catalytic cycle that consumes reduction equivalents to yield (it is proposed) dihydrogen.

998 citations

Journal ArticleDOI

[...]

TL;DR: In this article, the authors discuss the fundamental problems and challenges if urea-SCR is extended to mobile applications, including the control strategy for urea dosing, the high freezing point of urea, and the long term stability of the catalyst.
Abstract: Urea-SCR, the selective catalytic reduction using urea as reducing agent, has been investigated for about 10 years in detail and today is a well established technique for DeNO x of stationary diesel engines. It is presently also considered as the most promising way to diminish NO x emissions originating from heavy duty vehicles, especially trucks. The paper discusses the fundamental problems and challenges if urea-SCR is extended to mobile applications. The major goal is the reduction of the required catalyst volume while still maintaining a high selectivity for the SCR reaction over a wide temperature range. The much shorter residence time of the exhaust gas in the catalyst will lead to higher secondary emissions of ammonia and isocyanic acid originating from the reducing agent. Additional problems include the control strategy for urea dosing, the high freezing point of urea, and the long term stability of the catalyst.

951 citations

Journal ArticleDOI

[...]

904 citations

Journal ArticleDOI

[...]

TL;DR: In this paper, a series of manganese-cerium oxide catalysts were prepared by co-precipitation method and used for low temperature selective catalytic reduction of NO x with ammonia in the presence of excess O 2.
Abstract: A series of manganese-cerium oxide catalysts were prepared by co-precipitation method and used for low temperature selective catalytic reduction (SCR) of NO x with ammonia in the presence of excess O 2 . These catalysts were characterized by X-ray diffraction (XRD), surface area measurement and FTIR. The experimental results showed that the best Mn-Ce mixed-oxide catalyst yielded 95% NO conversion at 150 °C at a space velocity of 42,000 h −1 . As the manganese content was increased from 0 to 40% (i.e. the molar ratio of Mn/(Mn+Ce)), NO conversion increased significantly, but decreased at higher manganese contents. The most active catalyst was obtained with a molar Mn/(Mn+Ce) ratio of 0.4. Only N 2 rather than N 2 O was found in the product when the temperature was below 150 °C. At higher temperatures, trace amounts of N 2 O were detected. A mechanistic pathway for this reaction was proposed based on earlier findings and FTIR results obtained in this work. The initial step was the adsorption of NH 3 on Lewis acid sites of catalyst, followed by reaction with nitrite species to produce N 2 and H 2 O. Possible intermediates are proposed and all the intermediates could transform into NH 2 NO, which could further react to produce N 2 and H 2 O.

849 citations


Network Information
Related Topics (5)
Catalysis
400.9K papers, 8.7M citations
92% related
Photocatalysis
67K papers, 2.1M citations
90% related
Adsorption
226.4K papers, 5.9M citations
86% related
Oxide
213.4K papers, 3.6M citations
82% related
Aqueous solution
189.5K papers, 3.4M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202230
2021537
2020582
2019604
2018595
2017613