scispace - formally typeset
Search or ask a question
Topic

Selective catalytic reduction

About: Selective catalytic reduction is a research topic. Over the lifetime, 10502 publications have been published within this topic receiving 226291 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The low-temperature behavior of the selective catalytic reduction (SCR) process with feed gases containing both NO and NO2 was investigated in this article, where the two main reactions are 4NH3 + 2NO + 2 NO2 → 4N2 + 6H2O and 2NH3+ 2NO2 → NH4NO3 + N2 + H2O.
Abstract: The low-temperature behavior of the selective catalytic reduction (SCR) process with feed gases containing both NO and NO2 was investigated. The two main reactions are 4NH3 + 2NO + 2NO2 → 4N2 + 6H2O and 2NH3 + 2NO2 → NH4NO3 + N2 + H2O. The “fast SCR reaction” exhibits a reaction rate at least 10 times higher than that of the well-known standard SCR reaction with pure NO and dominates at temperatures above 200 °C. At lower temperatures, the “ammonium nitrate route” becomes increasingly important. Under extreme conditions, e.g., a powder catalyst at T ≈ 140 °C, the ammonium nitrate route may be responsible for the whole NOx conversion observed. This reaction leads to the formation of ammonium nitrate within the pores of the catalyst and a temporary deactivation. For a typical monolithic sample, the lower threshold temperature at which no degradation of catalyst activity with time is observed is around 180 °C. The ammonium nitrate route is interesting from a standpoint of general DeNOx mechanisms: This reac...

393 citations

Journal ArticleDOI
TL;DR: In this article, the results have been correlated with the catalytic behavior of these materials in the selective catalytic reduction (SCR) of NO by isobutane or ammonia.

386 citations

Journal ArticleDOI
TL;DR: In this article, the standard and fast selective catalytic reduction (SCR) of NO by NH3 are described in a complete catalytic cycle that is able to produce the correct stoichiometry while allowing adsorption and desorption of stable molecules only.
Abstract: For the first time, the standard and fast selective catalytic reduction (SCR) of NO by NH3 are described in a complete catalytic cycle that is able to produce the correct stoichiometry while allowing adsorption and desorption of stable molecules only. The standard SCR reaction is a coupling of the activation of NO by O2 with the fast SCR reaction, enabled by the release of NO2. According to the scheme, the SCR reaction can be divided into an oxidation of the catalyst by NO + O2 and a reduction by NO + NH3; these steps together constitute a complete catalytic cycle. Furthermore, both NO and NH3 are required in the reduction, and finally, oxidation by NO + O2 or NO2 leads to the same state of the catalyst. These points are shown experimentally for a Cu-CHA catalyst by combining in situ X-ray absorption spectroscopy (XAS), electron paramagnetic resonance (EPR), and Fourier transform infrared spectroscopy (FTIR). A consequence of the reaction scheme is that all intermediates in fast SCR are also part of the s...

381 citations

Journal ArticleDOI
TL;DR: A Highly active, time stable, and water resistant, Hombikat TiO2 supported Mn catalyst has been developed for the selective reduction of NO by NH3.
Abstract: A Highly active, time stable, and water resistant, Hombikat TiO2 supported Mn catalyst has been developed for the selective reduction of NO by NH3 [Eq. (1)]. The analogous Cu and Cr supported catalysts also provide 100 % N2 selectivity at ≤120°C. Lewis acidity, redox properties, and a high surface metal oxide concentration are essential for good catalytic performance.

379 citations

Journal ArticleDOI
TL;DR: In this paper, the authors investigated the effect of ammonium nitrate on the SCR reaction in the presence of NO and showed that ammonium Nitrate can lead to the formation of NO 2.

369 citations


Network Information
Related Topics (5)
Catalysis
400.9K papers, 8.7M citations
92% related
Photocatalysis
67K papers, 2.1M citations
90% related
Adsorption
226.4K papers, 5.9M citations
86% related
Oxide
213.4K papers, 3.6M citations
82% related
Aqueous solution
189.5K papers, 3.4M citations
82% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023311
2022632
2021546
2020583
2019604
2018595