scispace - formally typeset
Search or ask a question
Topic

Selective reduction

About: Selective reduction is a research topic. Over the lifetime, 1394 publications have been published within this topic receiving 29090 citations. The topic is also known as: multifetal pregnancy reduction & Pregnancy Reduction, Multifetal.


Papers
More filters
Journal ArticleDOI
TL;DR: Th thin films of nanosized metal-organic frameworks (MOFs) are introduced as atomically defined and nanoscopic materials that function as catalysts for the efficient and selective reduction of carbon dioxide to carbon monoxide in aqueous electrolytes.
Abstract: A key challenge in the field of electrochemical carbon dioxide reduction is the design of catalytic materials featuring high product selectivity, stability, and a composition of earth-abundant elements. In this work, we introduce thin films of nanosized metal-organic frameworks (MOFs) as atomically defined and nanoscopic materials that function as catalysts for the efficient and selective reduction of carbon dioxide to carbon monoxide in aqueous electrolytes. Detailed examination of a cobalt-porphyrin MOF, Al2(OH)2TCPP-Co (TCPP-H2 = 4,4',4″,4‴-(porphyrin-5,10,15,20-tetrayl)tetrabenzoate) revealed a selectivity for CO production in excess of 76% and stability over 7 h with a per-site turnover number (TON) of 1400. In situ spectroelectrochemical measurements provided insights into the cobalt oxidation state during the course of reaction and showed that the majority of catalytic centers in this MOF are redox-accessible where Co(II) is reduced to Co(I) during catalysis.

887 citations

Journal ArticleDOI
TL;DR: DFT calculations enlightened that the specific interaction between Ag nanoparticle and the anchoring agents modified the catalyst surface to have a selectively higher affinity to the intermediate COOH over CO, which effectively lowers the overpotential.
Abstract: Selective electrochemical reduction of CO2 is one of the most sought-after processes because of the potential to convert a harmful greenhouse gas to a useful chemical. We have discovered that immobilized Ag nanoparticles supported on carbon exhibit enhanced Faradaic efficiency and a lower overpotential for selective reduction of CO2 to CO. These electrocatalysts were synthesized directly on the carbon support by a facile one-pot method using a cysteamine anchoring agent resulting in controlled monodispersed particle sizes. These synthesized Ag/C electrodes showed improved activities, specifically decrease of the overpotential by 300 mV at 1 mA/cm2, and 4-fold enhanced CO Faradaic efficiency at −0.75 V vs RHE with the optimal particle size of 5 nm compared to polycrystalline Ag foil. DFT calculations enlightened that the specific interaction between Ag nanoparticle and the anchoring agents modified the catalyst surface to have a selectively higher affinity to the intermediate COOH over CO, which effectivel...

511 citations

Journal ArticleDOI
TL;DR: A design of a synergistic photocatalyst for selective reduction of CO2 to CO by using a covalent organic framework bearing single Ni sites (Ni-TpBpy), in which electrons transfer from photosensitizer to Ni sites for CO production by the activated CO2 reduction under visible-light irradiation.
Abstract: Photocatalytic reduction of CO2 into energy-rich carbon compounds has attracted increasing attention. However, it is still a challenge to selectively and effectively convert CO2 to a desirable reaction product. Herein, we report a design of a synergistic photocatalyst for selective reduction of CO2 to CO by using a covalent organic framework bearing single Ni sites (Ni-TpBpy), in which electrons transfer from photosensitizer to Ni sites for CO production by the activated CO2 reduction under visible-light irradiation. Ni-TpBpy exhibits an excellent activity, giving a 4057 μmol g–1 of CO in a 5 h reaction with a 96% selectivity over H2 evolution. More importantly, when the CO2 partial pressure was reduced to 0.1 atm, 76% selectivity for CO production is still obtained. Theoretical calculations and experimental results suggest that the promising catalytic activity and selectivity are ascribed to synergistic effects of single Ni catalytic sites and TpBpy, in which the TpBpy not only serves as a host for CO2 m...

458 citations

Journal ArticleDOI
TL;DR: A Highly active, time stable, and water resistant, Hombikat TiO2 supported Mn catalyst has been developed for the selective reduction of NO by NH3.
Abstract: A Highly active, time stable, and water resistant, Hombikat TiO2 supported Mn catalyst has been developed for the selective reduction of NO by NH3 [Eq. (1)]. The analogous Cu and Cr supported catalysts also provide 100 % N2 selectivity at ≤120°C. Lewis acidity, redox properties, and a high surface metal oxide concentration are essential for good catalytic performance.

379 citations

Journal ArticleDOI
TL;DR: The catalytic activity of Sn-Beta zeolite in the Meerwein-Ponndorf-Verley reduction of carbonyl compounds with secondary alcohols was performed with quantitative yields to the corresponding alcohol.
Abstract: The catalytic activity of Sn-Beta zeolite in the Meerwein−Ponndorf−Verley (MPV) reduction of carbonyl compounds with secondary alcohols was performed with quantitative yields to the corresponding alcohol. This heterogeneous catalyst exhibits activities and selectivities not observed before with other Me-zeolites.

378 citations


Network Information
Related Topics (5)
Catalysis
400.9K papers, 8.7M citations
93% related
Heterogeneous catalysis
22.2K papers, 835.3K citations
89% related
Palladium
64.7K papers, 1.3M citations
89% related
Aryl
95.6K papers, 1.3M citations
88% related
Alkyl
223.5K papers, 2M citations
88% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202318
202222
202133
202035
201931
201839