scispace - formally typeset
Search or ask a question

Showing papers on "Selenium published in 2005"


Journal ArticleDOI
TL;DR: Selenoprotein P binds to endothelial cells in the rat, and plasma levels of the protein correlate with prevention of diquat-induced lipid peroxidation and hepatic endothelial cell injury, indicating that plasma selenop protein P is the better index of human selenium nutritional status.
Abstract: Selenoprotein P is an abundant extracellular glycoprotein that is rich in selenocysteine. It has two domains with respect to selenium content. The N-terminal domain of the rat protein contains one selenocysteine residue in a UxxC redox motif. This domain also has a pH-sensitive heparin-binding site and two histidine-rich amino acid stretches. The smaller C-terminal domain contains nine selenocysteine and ten cysteine residues. Four isoforms of selenoprotein P are present in rat plasma. They share the same N terminus and amino acid sequence. One isoform is full length and the three others terminate at the positions of the second, third, and seventh selenocysteine residues. Selenoprotein P turns over rapidly in rat plasma with the consequence that approximately 25% of the amount of whole-body selenium passes through it each day. Evidence supports functions of the protein in selenium homeostasis and oxidant defense. Selenoprotein P knockout mice have very low selenium concentrations in the brain, the testis, and the fetus, with severe pathophysiological consequences in each tissue. In addition, those mice waste moderate amounts of selenium in the urine. Selenoprotein P binds to endothelial cells in the rat, and plasma levels of the protein correlate with prevention of diquat-induced lipid peroxidation and hepatic endothelial cell injury. The mechanisms of these apparent functions remain speculative and much work on the mechanism of selenoprotein P function lies ahead. Measurement of selenoprotein P in human plasma has shown that it is depressed by selenium deficiency and by cirrhosis. Selenium supplementation of selenium-deficient human subjects showed that glutathione peroxidase activity was optimized before selenoprotein P concentration was optimized, indicating that plasma selenoprotein P is the better index of human selenium nutritional status.

517 citations


Journal ArticleDOI
TL;DR: It is suggested that selenoprotein P is a better indicator of selenium nutritional status than is glutathione peroxidase and that the recommended dietary allowance of Selenium, which was set with the use of glutathion peroxIDase as the index of seenium status, should be revised.

312 citations


Journal ArticleDOI
TL;DR: Results indicate that over a short-term, a high-dose of selenite caused more pronounced oxidative stress, greater liver injury, and prominent retardation of growth as compared to Nano-Se.

293 citations


Journal ArticleDOI
TL;DR: In this paper, the effects of the Se chemical forms, selenite and selenate, the rate of their application on shoot Se concentration and their influence on the antioxidative system of ryegrass (Lolium perenne cv. Aries), through the measurement of GSH-Px activity and lipid peroxidation, were evaluated in an Andisol of Southern Chile.
Abstract: Selenium (Se) is an essential micronutrient for animal and human nutrition, but whether it is essential to plants remains controversial. However, there are increasing experimental evidences that indicate a protective role of Se against the oxidative stress in higher plants through Se-dependent glutathione peroxidase (GSH-Px) activity. The effects of the Se chemical forms, selenite and selenate, the rate of their application on shoot Se concentration and their influence on the antioxidative system of ryegrass (Lolium perenne cv. Aries), through the measurement of GSH-Px activity and lipid peroxidation, were evaluated in an Andisol of Southern Chile. Moreover, a soil–plant relationship for Se was determined and a simple method to extract available Se from acid soils is proposed. In a 55-day experiment ryegrass seeds were sown in pots and soil was treated with sodium selenite or sodium selenate (0–10 mg Se kg−1). The results showed that the Se concentration in shoots increased with the application of both selenite and selenate. However, the highest shoot Se concentrations were obtained in selenate-treated plants. For both sources of Se, there was a significant positive correlation between the shoot Se concentration and the GSH-Px activity; and the Se-dependence of this enzymatic activity was related especially with the chemical form of applied Se rather than the Se concentration in plant tissues. Furthermore, the lipid peroxidation, as measured by Thiobarbituric Acid Reactive Substances (TBARS), decreased at low levels of shoot Se concentration, reaching the lowest level at approximately 20 mg Se kg−1 in plants and then increased steadily above this level. In addition, the acid extraction method used to evaluate available Se in soil showed a positive good correlation between soil Se and shoot Se concentrations irrespective of chemical form of Se applied.

228 citations


Journal ArticleDOI
Kazuo T. Suzuki1
TL;DR: The metabolism of selenium in the body was reviewed from the viewpoint of metabolomics based on speciation studies and recent results contradicted this.
Abstract: Selenium is a trace element essential for the normal function of the body. This metalloid is quite unique in its metabolism compared with typical essential metals such as copper and zinc. In the present communication, the metabolism of selenium in the body was reviewed from the viewpoint of metabolomics based on speciation studies. Both inorganic and organic forms of slenium can be the nutritional source, and they are transformed to the common intermediate, selenide or its equivalent. Selenite and selenate are reduced simply to selenide for further utilization and/or excretion. On the other hand, organic selenocysteine is directly lysed to selenide, while selenomethionine is transformed to selenocysteine (trans-selenation pathway), similarly to the trans-sulfuration pathway for methionine to cysteine, and then lysed to selenide. Selenide is known to be transformed to selenocysteine on tRNA, and the selenocysteinyl residue is incorporated into selenoprotein sequences by the codon specific to selenocysteine, UGA. Diverse selenium chemicals in foods seem to be recognized as selenium species and transformed to selenide, and then utilized for the synthesis of selenoproteins. Surplus selenium is methylated stepwise to methylated selenium metabolites from the common intermediate selenide. The major urinary metabolite is 1β-methylseleno-N-acetyl-D-galactosamine (selenosugar). Trimethylselenonium has been recognized as the urinary metabolite excreted in response to excessive doses and as a biological marker for excessive doses. However, recent results contradicted this.

222 citations


Journal ArticleDOI
TL;DR: Serum copper, zinc and selenium concentrations are influenced by physiological conditions such as age, diet and gender, and their serum concentrations are also associated with coronary risk factors, including body mass index, levels of physical activity, serum HDL-C and CRP.
Abstract: Background: We have investigated the association between serum copper, zinc and selenium concentrations, dietary intake, and demographic characteristics, including individual coronary risk factors,...

182 citations



Journal ArticleDOI
TL;DR: The results suggested that the decreased yield in pumpkins was related to the UV-B impaired flow of electrons in the respiratory chain, and no significant effect of excludingUV-B radiation or of treatment with selenium was observed on the photochemical efficiency of photosystem II (PSII).

165 citations


Journal ArticleDOI
TL;DR: Results reveal that SeMSC accumulation closely correlated with the BoSMT gene expression and the total Se status in tissues and provide important information for maximizing the SeMSc production in this beneficial vegetable plant.
Abstract: Selenium (Se) plays an indispensable role in human nutrition and has been implicated to have important health benefits, including being a cancer preventative agent. While different forms of Se vary in their anticarcinogenic efficacy, Se-methylselenocysteine (SeMSC) has been demonstrated to be one of the most effective chemopreventative compounds. Broccoli (Brassica oleracea var. italica) is known for its ability to accumulate high levels of Se with the majority of the selenoamino acids in the form of Se-methylselenocysteine. Therefore, it serves as a good model to study the regulation of SeMSC accumulation in plants. A cDNA encoding selenocysteine Se-methyltransferase, the key enzyme responsible for SeMSC formation, was cloned from broccoli using a homocysteine S-methyltransferase gene probe from Arabidopsis (Arabidopsis thaliana). This clone, designated as BoSMT, was functionally expressed in Escherichia coli, and its identity was confirmed by its substrate specificity in the methylation of selenocysteine. The BoSMT gene represents a single copy sequence in the broccoli genome. Examination of BoSMT gene expression and SeMSC accumulation in response to selenate, selenite, and sulfate treatments showed that the BoSMT transcript and SeMSC synthesis were significantly up-regulated in plants exposed to selenate but were low in plants supplied with selenite. Simultaneous treatment of selenate with selenite significantly reduced SeMSC production. In addition, high levels of sulfate suppressed selenate uptake, resulting in a dramatic reduction of BoSMT mRNA level and SeMSC accumulation. Our results reveal that SeMSC accumulation closely correlated with the BoSMT gene expression and the total Se status in tissues and provide important information for maximizing the SeMSC production in this beneficial vegetable plant.

147 citations


Journal ArticleDOI
TL;DR: The proposed mechanisms of this interaction include the increase of biliary excretion and direct interaction/precipitation of selenium and arsenic, and their effects on zinc finger protein function, cellular signaling and methylation pathways, and how anti-carcinogenic effects of seenium may be affected by arsenic.

137 citations


Journal ArticleDOI
Josef Köhrle1
30 Aug 2005-Thyroid
TL;DR: Selenium is retained and deiodinase expression is maintained at almost normal levels in the thyroid gland, the brain and several other endocrine tissues during selenium deficiency, thus guaranteeing adequate local and systemic levels of the active thyroid hormone T(3).
Abstract: Thyroid hormone synthesis, metabolism and action require adequate availability of the essential trace elements iodine and selenium, which affect homeostasis of thyroid hormone-dependent metabolic pathways. The three selenocysteine-containing iodothyronine deiodinases constitute a novel gene family. Selenium is retained and deiodinase expression is maintained at almost normal levels in the thyroid gland, the brain and several other endocrine tissues during selenium deficiency, thus guaranteeing adequate local and systemic levels of the active thyroid hormone T(3). Due to their low tissue concentrations and their mRNA SECIS elements deiodinases rank high in the cellular and tissue-specific hierarchy of selenium distribution among various selenoproteins. While systemic selenium status and expression of abundant selenoproteins (glutathione peroxidase or selenoprotein P) is already impaired in patients with cancer, disturbed gastrointestinal resorption, unbalanced nutrition or patients requiring intensive care treatment, selenium-dependent deiodinase function might still be adequate. However, disease-associated alterations in proinflammatory cytokines, growth factors, hormones and pharmaceuticals modulate deiodinase isoenzyme expression independent from altered selenium status and might thus pretend causal relationships between systemic selenium status and altered thyroid hormone metabolism. Limited or inadequate supply of both trace elements, iodine and selenium, leads to complex rearrangements of thyroid hormone metabolism enabling adaptation to unfavorable conditions.

Journal ArticleDOI
TL;DR: Previous indications that cadmium, cobalt, and copper are absorbed by transport mechanisms similar to that of Fe are supported by this study and strong positive correlations between Fe status and mercury concentrations remain to be explained.

Journal ArticleDOI
TL;DR: It follows that not all men will necessarily benefit from increasing their selenium intake and that measurement of baseline nutrient status should be required for all individuals in prevention trials to avoid oversupplementation.
Abstract: Daily supplementation with the essential trace mineral selenium significantly reduced prostate cancer risk in men in the Nutritional Prevention of Cancer Trial. However, the optimal intake of selenium for prostate cancer prevention is unknown. We hypothesized that selenium significantly regulates the extent of genotoxic damage within the aging prostate and that the relationship between dietary selenium intake and DNA damage is non-linear, i.e. more selenium is not necessarily better. To test this hypothesis, we conducted a randomized feeding trial in which 49 elderly beagle dogs (physiologically equivalent to 62-69-year-old men) received nutritionally adequate or supranutritional levels of selenium for 7 months, in order to mimic the range of dietary selenium intake of men in the United States. Our results demonstrate an intriguing U-shaped dose-response relationship between selenium status (toenail selenium concentration) and the extent of DNA damage (alkaline Comet assay) within the prostate. Further, we demonstrate that the concentration of selenium that minimizes DNA damage in the aging dog prostate remarkably parallels the selenium concentration in men that minimizes prostate cancer risk. By studying elderly dogs, the only non-human animal model of spontaneous prostate cancer, we have established a new approach to bridge the gap between laboratory and human studies that can be used to select the appropriate dose of anticancer agents for large-scale human cancer prevention trials. From the U-shaped dose-response, it follows that not all men will necessarily benefit from increasing their selenium intake and that measurement of baseline nutrient status should be required for all individuals in prevention trials to avoid oversupplementation.

Journal ArticleDOI
TL;DR: The kinetic and mechanistic studies reveal that MSeI inhibits the LPO activity by reducing the H(2)O(2), providing a novel method to reversibly inhibit the enzyme.
Abstract: Syntheses and characterization of the selenium analogue (MSeI) of anti-thyroid drug methimazole and a series of organoselenium compounds bearing N-methylimidazole pharmacophore are described. In contrast to the sulfur compound that exists predominantly in its thione form, the selenium analogue exists in a selenol form, which spontaneously oxidizes in air to produce the corresponding diselenide. The reduction of the diselenide by GSH or $NaBH_4$ affords the biologically active selenol, which effectively inhibits the lactoperoxidase (LPO) activity in vitro. The monoselenides having N-methylimidazole moiety are found to be much less active than the selenol, suggesting that the presence of a selenol moiety is important for the LPO inhibition. The kinetic and mechanistic studies reveal that MSeI inhibits the LPO activity by reducing the $H_2O_2$, providing a novel method to reversibly inhibit the enzyme. Although MSeI strongly inhibits LPO, the enzyme's activity can be completely recovered by increasing the $H_2O_2$ concentration. On the other hand, the inhibition by methimazole (MMI), the sulfur analogue, cannot be reversed by increasing the $H_2O_2$ concentration, leading to a complete inactivation of the enzyme. The reversible inhibition of LPO by some of the selenium derivatives is correlated with their glutathione peroxidase (GPx) activity, and the high GPx activity of the selenium compounds as compared with their sulfur analogues suggests that the selenium derivatives may protect the thyroid gland from oxidative damage.

Journal ArticleDOI
TL;DR: Results show that R. metallidurans CH34 may be suitable for the remediation of selenite- but not selenate- contaminated environments, and selenATE mostly follows an assimilatory pathway and the reduction pathway is not activated upon selenates exposure.
Abstract: Ralstonia metallidurans CH34, a soil bacterium resistant to a variety of metals, is known to reduce selenite to intracellular granules of elemental selenium (Se(0)). We have studied the kinetics of selenite (Se(IV)) and selenate (Se(VI)) accumulation and used X-ray absorption spectroscopy to identify the accumulated form of selenate, as well as possible chemical intermediates during the transformation of these two oxyanions. When introduced during the lag phase, the presence of selenite increased the duration of this phase, as previously observed. Selenite introduction was followed by a period of slow uptake, during which the bacteria contained Se(0) and alkyl selenide in equivalent proportions. This suggests that two reactions with similar kinetics take place: an assimilatory pathway leading to alkyl selenide and a slow detoxification pathway leading to Se(0). Subsequently, selenite uptake strongly increased (up to 340 mg Se per g of proteins) and Se(0) was the predominant transformation product, suggesting an activation of selenite transport and reduction systems after several hours of contact. Exposure to selenate did not induce an increase in the lag phase duration, and the bacteria accumulated approximately 25-fold less Se than when exposed to selenite. Se(IV) was detected as a transient species in the first 12 h after selenate introduction, Se(0) also occurred as a minor species, and the major accumulated form was alkyl selenide. Thus, in the present experimental conditions, selenate mostly follows an assimilatory pathway and the reduction pathway is not activated upon selenate exposure. These results show that R. metallidurans CH34 may be suitable for the remediation of selenite-, but not selenate-, contaminated environments.

Journal ArticleDOI
TL;DR: In this paper, the selenium contents of some selected foods purchased on the Slovenian market were determined and estimation of the daily dietary intake by analysing 20 diet samples collected in four Slovenian Army barracks was made.

Journal ArticleDOI
TL;DR: Among the fish species studied, sardine had the most favourable Se:Hg and SeMet:MeHg molar ratios; therefore, its consumption seems to be preferable.
Abstract: Mercury (Hg) and selenium (Se) determinations were carried out to evaluate human exposure to those elements through fish consumption in Spain and Portugal. Atomic fluorescence spectroscopy (AFS) was applied in a cold vapor mode for total mercury quantification and was also hyphenated to gas chromatography (GC) to achieve the speciation of organomercurial species in fish samples. The results obtained show the highest concentration of Hg in swordfish and tuna (0.47±0.02 and 0.31±0.01 μg g−1, respectively), and a much lower concentration in sardine, mackerel shad, and octopus (0.048±0.002, 0.033±0.001, and 0.024±0.001 μg g−1, respectively), The determination of alkyl mercury compounds revealed that 93–98% of mercury in the fish samples was in the organic form. Methylmercury (MeHg) was the only species found in the three fish species with higher mercury content. Total selenium concentraton was high in sardine, swordfish, and tuna (0.43±0.02, 0.47±0.02, and 0.92±0.01 μg g−1, respectively), but low in mackeral shad and octopus (0.26±0.01 and 0.13±0.01 μg g−1, respectively). Speciation of selenium compounds was done by high-performance liquid chromatography in conjunction with inductively coupled plasma mass spectrometry (LC-ICP-MS). Selenomethionine (SeMet) was the only selenium compound identified in the fish samples with higher selenium content. Among the fish species studied, sardine had the most favourable Se:Hg and SeMet:MeHg molar ratios; therefore, its consumption seems to be preferable.

Journal ArticleDOI
TL;DR: An increase in the dietary selenium from 1 to 8 ppm revealed only minor improvements in the oxidative stability of chicken meat during refrigerated storage.

Journal Article
TL;DR: In this paper, structural and phase transformations taking place at heating as well as at cooling (or at constant temperature) of all above indicated selenium forms have been considered, and the analysis of transformations inside of different Se forms and between them has been made on the base of the concept of the polymeric-polymorphoid structure of glass and glass-forming liquid using data of diffractometry, IR-, Raman and UV-photoelectron spectroscopy.
Abstract: At normal pressure selenium exists in several forms of condensed state: crystalline (hexagonal Se n , α-, β-, γ-monoclinic Se 8 , monoclinic Se 8 ), rhombohedral Se 6 , α- and β-cubic Se, amorphous Se (red, brown and black Se), 4 liquid modifications, vitreous selenium. Structural and phase transformations taking place at heating as well as at cooling (or at constant temperature) of all above indicated selenium forms have been considered. The analysis of transformations inside of different Se forms and between them has been made on the base of the concept of the polymeric-polymorphoid structure of glass and glass-forming liquid using data of diffractometry, IR-, Raman- and UV-photoelectron spectroscopy as well as results of heat capacity alterations in the range of Se glass transition and enthalpy of transformation of non-crystalline Se forms into others.

Journal ArticleDOI
TL;DR: The inclusion of Se-enriched broccoli in the diet of rats induced the activity of the selenoprotein thioredoxin reductase beyond the maximum activity induced by Se alone, emphasizing the complex interactions of bioactive chemicals in a food.
Abstract: Multiple components of broccoli, such as sulforaphane (Sf) and phenolic acids, may inhibit cancer. Additionally, broccoli can accumulate selenium (Se), and Se has been demonstrated to reduce the risk of cancer. Studies were conducted to determine whether enhancement of broccoli with Se would produce a plant with superior health benefits. Although increasing the concentration of Se in broccoli from 800 microg/g resulted in inhibition of colon cancer in rats, it also decreased the Sf content by >80% and inhibited production of most phenolic acids. The inclusion of Se-enriched broccoli in the diet of rats induced the activity of the selenoprotein thioredoxin reductase beyond the maximum activity induced by Se alone. These results emphasize the complex interactions of bioactive chemicals in a food; attempts to maximize one component may affect accumulation of another, and consumption of high amounts of multiple bioactive compounds may result in unexpected metabolic interactions within the body.

Journal ArticleDOI
TL;DR: At higher concentrations, the link between effects at the sub-cellular and population levels, the over-accumulation of starch, and the formation of dense granules containing selenium are reported for the first time in the literature for a phytoplankton species after exposure to selenite.

Journal ArticleDOI
TL;DR: The cyclic tellurinate ester 27 and spirodioxytellurane 29 proved to be superior catalysts to their selenium analogues 14 and 16, resulting in the fastest reaction rates by far of all of the compounds investigated to date, which produced the unusual and unexpected peroxide 33.
Abstract: Several novel organoselenium and tellurium compounds were prepared and evaluated as mimetics of the selenoenzyme glutathione peroxidase, which protects cells from oxidative stress by reducing harmful peroxides with the thiol glutathione. The compounds were tested for catalytic activity in a model system wherein tert-butyl hydroperoxide or hydrogen peroxide were reduced with benzyl thiol and the rate of the reaction was measured by monitoring the formation of dibenzyl disulfide. Thus, aromatic derivatives 19, 22, 24, and 25 proved to be inferior catalysts compared to the parent cyclic seleninate ester 14 and spirodioxyselenurane 16. In the case of 19 and 22, this was the result of their rapid conversion to the relatively inert selenenyl sulfides 31 and 32, respectively. In general, hydrogen peroxide was reduced faster than tert-butyl hydroperoxide in the presence of the selenium-based catalysts. The cyclic tellurinate ester 27 and spirodioxytellurane 29 proved to be superior catalysts to their selenium ana...

Journal ArticleDOI
TL;DR: Polarography was not able to detect formation of complexes with these metal ions, at least under the experimental conditions used: a decrease of Hg2+ ion concentration was observed.

Journal ArticleDOI
TL;DR: A significant inverse association of dietary intakes and serum levels of zinc and selenium with gestational hyperglycemia was suggested and it might be a useful interventional approach to appropriate dietary counseling in order to evaluate the possible decrease in gestational metabolic abnormalities and their adverse consequences.

Journal ArticleDOI
TL;DR: A wide range of selenium content was found among the various food groups, and Selenium content in vegetables and fruits was lower than the reported values from other countries.

Journal ArticleDOI
TL;DR: In this article, a method for obtaining thin films of polycrystalline antimony selenide via chemical bath deposition followed by heating the thin films at 573 K in selenium vapor was reported.

Journal ArticleDOI
TL;DR: The results support earlier studies showing that selenosugar 1 is the major urinary metabolite after increased selenium intake, and they suggest that previously accepted pathways for human metabolism of Selenium involving trimethylselenonium ion as the excretionary end product may need to be re-evaluated.
Abstract: To obtain quantitative information on human metabolism of selenium, we have performed selenium speciation analysis by HPLC/ICPMS on samples of human urine from one volunteer over a 48-hour period after ingestion of selenium (1.0 mg) as sodium selenite, L-selenomethionine, or DL-selenomethionine. The three separate experiments were performed in duplicate. Normal background urine from the volunteer contained total selenium concentrations of 8–30 μg Se/L (n=22) but, depending on the chromatographic conditions, only about 30–70% could be quantified by HPLC/ICPMS. The major species in background urine were two selenosugars, namely methyl-2-acetamido-2-deoxy-1-seleno-β-D-galactopyranoside (selenosugar 1) and its deacylated analog methyl-2-amino-2-deoxy-1-seleno-β-D-galactopyranoside (selenosugar 3). Selenium was rapidly excreted after ingestion of the selenium compounds: the peak concentrations (∼250–400 μg Se/L, normalized concentrations) were recorded within 5–9 hours, and concentrations had returned to close to background levels within 48 hours, by which time 25–40% of the ingested selenium, depending on the species ingested, had been accounted for in the urine. In all experiments, the major metabolite was selenosugar 1, constituting either ∼80% of the total selenium excreted over the first 24 hours after ingestion of selenite or L-selenomethionine or ∼65% after ingestion of DL-selenomethionine. Selenite was not present at significant levels (<1 μg Se/L) in any of the samples; selenomethionine was present in only trace amounts (∼1 μg/L, equivalent to less than 0.5% of the total Se) following ingestion of L-selenomethionine, but it constituted about 20% of the excreted selenium (first 24 hours) after ingestion of DL-selenomethionine, presumably because the D form was not efficiently metabolized. Trimethylselenonium ion, a commonly reported urine metabolite, could not be detected (<1 μg/L) in the urine samples after ingestion of selenite or selenomethionine. Cytotoxicity studies on selenosugar 1 and its glucosamine isomer (selenosugar 2, methyl-2-acetamido-2-deoxy-1-seleno-β-D-glucosopyranoside) were performed with HepG2 cells derived from human hepatocarcinoma, and these showed that both compounds had low toxicity (about 1000-fold less toxic than sodium selenite). The results support earlier studies showing that selenosugar 1 is the major urinary metabolite after increased selenium intake, and they suggest that previously accepted pathways for human metabolism of selenium involving trimethylselenonium ion as the excretionary end product may need to be re-evaluated.

Journal ArticleDOI
TL;DR: Quantification by ID LC/MS and LC ICPMS yields the most precise sets of results with relative standard deviations in the range 0.5-1.3% (n = 6).
Abstract: Selenomethionine (SeMet) and methionine (Met), liberated by acid hydrolysis of selenium-enriched yeast, were quantified by liquid chromatography-mass spectrometry (LC/MS) using standard additions calibrations as well as isotope dilution (ID) based on species-specific (13)C-enriched spikes. LC inductively coupled plasma mass spectrometry (ICPMS) was also employed for the quantification of SeMet, and (74)Se-enriched SeMet was used for ID calibration. The results were evaluated to ascertain the feasibility of using these methods in a campaign to certify selenized yeast. Good agreement was found between the methods, which, when averaged, gave concentrations of 5482.2 +/- 101 and 3256.9 +/- 217.4 microg/g for Met and SeMet, respectively. This corresponds to a 1.68:1 Met-to-SeMet ratio in the yeast. Quantification by ID LC/MS and LC ICPMS yields the most precise sets of results with relative standard deviations in the range 0.5-1.3% (n = 6). A total selenium concentration of 2064.6 +/- 45.4 microg/g was obtained for this yeast material. The extraction efficiency and a mass balance budget were determined. Acid hydrolysis liberated 81.0% of the total selenium present. SeMet comprised 79.0% of the extracted selenium and 63.9% of the total selenium present in the yeast.

Journal ArticleDOI
15 Mar 2005-Talanta
TL;DR: The proposed method was successfully applied to the simultaneous determination of As, Sb, Bi and Se in a series of Chinese certified biological reference materials using simple aqueous standard calibration technique, and the results obtained are in good agreement with the certified values.

Journal ArticleDOI
TL;DR: It is believed that the resistance to the stressors was due to an improved redox status of the selenium yeast-fed chickens, which maintained higher levels of GSSG before and after HS with a resultant lower GSH/GSSG ratio.
Abstract: The effect of dietary selenium yeast, a source of organic selenium, on heat shock protein 70 (hsp70) responses, redox status, growth and feed utilization were evaluated either in enteropathogenic Escherichia coli-challenged (EPEC) or in heat-stressed (HS) male broiler chickens grown to 42 days of age. One day-old chicks in experiment 1 were challenged orally with EPEC (10(6) cfu/chicken on day 1 and boosted by water application on days 2, 3, and 4) and fed diets with or without selenium yeast. Body weight (BW), feed conversion ratio (FCR), and total mortality were determined at 42 days of age, and this was followed by collection of ileal tissue for the quantification of total glutathione (TGSH), reduced glutathione (GSH), oxidized glutathione (GSSG), and hsp70 in randomly selected chickens from each treatment. In experiment 2, male broiler chickens were fed diets with or without selenium yeast under a thermoneutral rearing condition. At four weeks of age, blood and hepatic tissue were collected from chickens maintained in the thermoneutral environment and from chickens subjected to HS (40 degrees C for 1 h) and analyzed for TGSH, GSH, GSSG, and hsp70. Selenium yeast improved BW, FCR, and decreased mortality in both control and EPEC-challenged chicks. Selenium yeast significantly attenuated hsp70 expression in EPEC-challenged chickens and in those subjected to HS. The EPEC challenge increased TGSH and GSSG levels and decreased GSH/GSSG ratio. However, GSSG level accumulated in chickens fed diets without selenium supplementation resulting in a lower GSH/GSSG ratio in the selenium yeast-fed group. Heat stress increased GSSG level and decreased GSH/GSSG ratio. Selenium yeast-fed groups maintained higher levels of GSSG before and after HS with a resultant lower GSH/GSSG ratio. The hsp70 response was significantly less in those chickens fed selenium yeast and challenged with either EPEC or HS than in those chickens given no supplemental selenium. The results of this study suggest that selenium yeast supplementation had imparted resistance to oxidative stress associated with enteric bacteria infection and to high temperature exposure. It is believed that the resistance to the stressors was due to an improved redox status of the selenium yeast-fed chickens.