scispace - formally typeset
Search or ask a question
Topic

Selenium

About: Selenium is a research topic. Over the lifetime, 21192 publications have been published within this topic receiving 429715 citations. The topic is also known as: Se & selen.


Papers
More filters
Journal ArticleDOI
TL;DR: It is indicated that the immune-enhancing properties of selenium in humans are the result, at least in part, of improved activation and proliferation of B-lymphocytes and perhaps enhanced T-cell function.
Abstract: Eleven men were fed foods naturally high or low in selenium for 120 d. Selenium intake was stabilized at 47 µg/d for 21 d, then changed to either 13 or 297 µg/d for 99 d, leading to significantly different blood selenium and glutathione peroxidase concentrations. Serum immunoglobulins, complement components, and primary antibody responses to influenza vaccine were unchanged. Antibody titers against diphtheria vaccine were 2.5-fold greater after reinoculation in the high selenium group. White blood cell counts decreased in the high-selenium group and increased in the low-selenium group, resulting primarily from changes in granulocytes. Apparent increases in cytotoxic T-lymphocytes and activated T-cells in the high-selenium group only approached statistical significance. Lymphocyte counts increased on d 45 in the high-selenium group. In vitro proliferation of peripheral lymphocytes in autologous serum in response to pokeweed mitogen was stimulated in the high-selenium group by d 45 and remained elevated throughout the study, whereas proliferation in the low selenium group did not increase until d 100. This study indicates that the immune-enhancing properties of selenium in humans are the result, at least in part, of improved activation and proliferation of B-lymphocytes and perhaps enhanced T-cell function.

121 citations

Journal Article
Seko Y1, Imura N
TL;DR: It is emphasized that carefully designed experiments are required to further identify the molecular species of active oxygen induced by selenium compounds.

121 citations

Journal ArticleDOI
TL;DR: It is shown for the first time that selenium at low doses can provide significant protection of the human coronary artery endothelium against damage by oxidative stress.
Abstract: The ability of selenium to protect cultured human coronary artery endothelial cells (HCAEC), human umbilical vein endothelial cells (HUVEC) and bovine aortic endothelial cells (BAEC) from oxidative damage induced by 100 microM t-butyl hydroperoxide (t-BuOOH) was compared. Preincubation of human endothelial cells for 24 h with sodium selenite at concentrations as low as 5 nM provided significant protection against the harmful effects of 100 microM t-BuOOH, with complete protection being achieved with 40 nM selenite. The preincubation period was required for selenite to exert this protective effect on endothelial cells. When compared with selenium-deficient cells, the activities of cytoplasmic glutathione peroxidase (GPX-1), phospholipid hydroperoxide glutathione peroxidase (GPX-4) and thioredoxin reductase (TR) were each induced approx. 3--4-fold by 40 nM selenite. HCAEC and HUVEC showed great similarity in their relative abilities to resist oxidative damage in the presence and absence of selenite, and the activities of TR and the GPXs were also similar in these cell types. BAEC were more susceptible to damage by 100 microM t-BuOOH than were human endothelial cells, and could not be protected completely by incubation with selenite at concentrations up to 160 nM. The activity of TR in human endothelial cells was approx. 25-fold greater than that in BAEC of a similar selenium status, but GPX-1 and GPX-4 activities were not significantly different between the human and bovine cells. These studies, although performed with a small number of cultures, show for the first time that selenium at low doses can provide significant protection of the human coronary artery endothelium against damage by oxidative stress. TR may be an important antioxidant selenoprotein in this regard, in addition to the GPXs. The data also suggest that HUVEC, but not BAEC, represent a suitable model system in which to study the effects of selenium on the endothelium of human coronary arteries.

120 citations

Journal ArticleDOI
TL;DR: Testing the effect of Se on the production and detoxification of H2O2 in non-stressed plants indicates that an application of selenate at low rates can be used to prevent the induction in plants of the antioxidant system, thereby improving stress resistance.
Abstract: Selenium is considered an essential element for animals. Despite that it has not been demonstrated to be essential for higher plants, it has been attributed with a protective role against reactive oxygen species in plants subjected to stress. In this study, lettuce plants (Lactuca sativa cv. Philipus) received different application rates (5, 10, 20, 40, 60, 80 and 120 μM) of selenite or selenate, with the aim of testing the effect of Se on the production and detoxification of H2O2 in non-stressed plants. The results indicate that the form selenate is less toxic than selenite; that is, the plants tolerated and responded positively to this element, and even increasing in growth up to a rate of 40 μM for the form selenate. On the contrary, the application of selenite triggered a higher foliar concentration of H2O2 and a higher induction of lipid peroxidation [malondialdehyde content and lipoxygenase activity] in comparison to that observed after the selenate application. Also, the plants treated with selenate induced higher increases in enzymes that detoxify H2O2, especially ascorbate peroxidase and glutathione (GSH) peroxidase, as well as an increase in the foliar concentration of antioxidant compounds such as ascorbate and GSH. These data indicate that an application of selenate at low rates can be used to prevent the induction in plants of the antioxidant system, thereby improving stress resistance.

120 citations

Journal ArticleDOI
Jae-Won Choi1, Narae Kang1, Hye Yun Yang1, Hae Jin Kim, Seung Uk Son1 
TL;DR: In this paper, high quality copper selenide nanodiscs with a 2.6 nm thickness were prepared using imidazoline-2-selenone as a new selenium precursor.
Abstract: High-quality copper selenide nanodiscs with a 2.6 nm thickness were prepared using imidazoline-2-selenone as a new selenium precursor. The phase of prepared nanomaterials was characterized to be cubic Cu2−XSe by HR-TEM, XRPD, EDX, and XPS. Promising optoelectric properties were observed by solar simulators after fabricating the film on glass.

120 citations


Network Information
Related Topics (5)
Amino acid
124.9K papers, 4M citations
83% related
Glutathione
42.5K papers, 1.8M citations
80% related
Fatty acid
74.5K papers, 2.2M citations
79% related
Aqueous solution
189.5K papers, 3.4M citations
79% related
Ascorbic acid
93.5K papers, 2.5M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,062
20222,045
2021554
2020569
2019705
2018792