scispace - formally typeset
Search or ask a question
Topic

Selenium

About: Selenium is a research topic. Over the lifetime, 21192 publications have been published within this topic receiving 429715 citations. The topic is also known as: Se & selen.


Papers
More filters
Journal ArticleDOI
TL;DR: It appears from these results that lead may exert its toxic effect via peroxidative damage to renal and hepatic cell membranes after 24 hours, and selenium enhances the endogenous antioxidant capacity of the cells by increasing the activities of the superoxide dismutase and glutathione reductase and the glutATHione content.
Abstract: Male albino rats were intramuscularly administered a single dose of lead acetate (100 micromol/kg b.wt). Another group of rats were injected with sodium selenite (10 micromol/kg b.wt) before lead intoxication. After 3 and 24 hours, lead treatment resulted in significant increases in acid and alkaline phosphatases, GOT and GPT, total proteins, and cholesterol in serum. The total triglycerides in serum was decreased after 24 hours of intoxication. Lead treatment also produced significant elevation of lipid peroxidation in liver and kidney. The antioxidant capacity of hepatic and renal cells in terms of the activities of superoxide dismutase, glutathione reductase, and glutathione content was diminished. It appears from these results that lead may exert its toxic effect via peroxidative damage to renal and hepatic cell membranes after 24 hours. Selenium administration prior to lead injection produced pronounced prophylactic action against lead effects, and it is observed that selenium enhances the endogenous antioxidant capacity of the cells by increasing the activities of the superoxide dismutase and glutathione reductase and the glutathione content. As a result, the lipid peroxidation was decreased in both liver and kidney.

113 citations

Journal ArticleDOI
TL;DR: Results indicate that structurally distinctive organoselenium compounds are superior to their corresponding sulfur analogs in cancer chemoprevention and synthetic aromatic selenocyanates are more effective cancer Chemopreventive agents than the naturally occurring selenoamino acids.
Abstract: As early as 1550 B.C., Egyptians realized the benefits of garlic as a remedy for a variety of diseases. Many epidemiological studies support the protective role of garlic and related allium foods against the development of certain human cancers. Natural garlic and garlic cultivated with selenium fertilization have been shown in laboratory animals to have protective roles in cancer prevention. Certain organoselenium compounds and their sulfur analogs have been identified in plants. Organoselenium compounds synthesized in our laboratory were compared with their sulfur analogs for chemopreventive efficacy. Diallyl selenide was at least 300-fold more effective than diallyl sulfide in protecting against 7,12-dimethylbenz[a]anthracene (DMBA)-induced mammary adenocarcinomas in rats. In addition, benzyl selenocyanate inhibited the development of DMBA-induced mammary adenocarcinomas and azoxymethane-induced colon cancer in rats and benzo[a]pyrene-induced forestomach tumors in mice. The sulfur analog, benzyl thiocyanate, had no effect under the same experimental conditions. Furthermore, we showed that 1,4-phenylenebis(methylene)selenocyanate, but not its sulfur analog, significantly inhibited DMBA-DNA adduct formation and suppressed DMBA-induced mammary carcinogenesis. Collectively, these results indicate that structurally distinctive organoselenium compounds are superior to their corresponding sulfur analogs in cancer chemoprevention. Additionally, synthetic aromatic selenocyanates are more effective cancer chemopreventive agents than the naturally occurring selenoamino acids. Because plants are capable of utilizing selenium in a manner similar to that in sulfur assimilation pathways, future studies should aim at determining whether, under appropriate conditions, these potent cancer chemopreventive synthetic selenium compounds can be synthesized by garlic and related allium foods.

113 citations

Journal ArticleDOI
TL;DR: This MiniReview focuses on the tumour-specific cytotoxic effects of selenium, with special emphasis on cascades of cellular events induced by the major groups of pharmacologically active selenum compounds.
Abstract: Selenium is an essential trace element with growth-modulating properties. Decades of research clearly demonstrate that selenium compounds inhibit the growth of malignant cells in diverse experimental model systems. However, the growth-modulating and cytotoxic mechanisms are diverse and far from clear. Lately, a remarkable tumour selective cytotoxicity of selenium compounds has been shown, indicating the potential of selenium in the treatment of cancer. Of particular interest are the redox-active selenium compounds exhibiting cytotoxic potential to tumour cells. These selenium compounds elicit complex patterns of pharmacodynamics and pharmacokinetics, leading to cell death pathways that differ among compounds. Modern oncology often focuses on targeted ligand-based therapeutic strategies that are specific to their molecular targets. These drugs are initially efficient, but the tumour cells often rapidly develop resistance against these drugs. In contrast, certain redox-active selenium compounds induce complex cascades of pro-death signalling at pharmacological concentrations with superior tumour specificity. The target molecules are often the ones that are important for the survival of cancer cells and often implicated in drug resistance. Therefore, the chemotherapeutic applications of selenium offer great possibilities of multi-target attacks on tumour cells. This MiniReview focuses on the tumour-specific cytotoxic effects of selenium, with special emphasis on cascades of cellular events induced by the major groups of pharmacologically active selenium compounds. Furthermore, the great pharmacological potential of selenium in the treatment of resistant cancers is discussed.

112 citations

13 May 2018
TL;DR: In this article, Selenium (Se) lithium and sodium metal cathodes are created that are monolithic and free-standing, and with record Se loading of 70 wt%.
Abstract: Energy density (energy per volume) is a key consideration for portable, automotive, and stationary battery applications. Selenium (Se) lithium and sodium metal cathodes are created that are monolithic and free-standing, and with record Se loading of 70 wt%. The carbon host is derived from nanocellulose, an abundant and sustainable forestry product. The composite is extremely dense (2.37 g cm−3), enabling theoretical volumetric capacity of 1120 mA h cm−3. Such architecture is fully distinct from previous Se–carbon nano- or micropowders, intrinsically offering up to 2× higher energy density. For Li storage, the cathode delivers reversible capacity of 1028 mA h cm−3 (620 mA h g−1) and 82% retention over 300 cycles. For Na storage, 848 mA h cm−3 (511 mA h g−1) is obtained with 98% retention after 150 cycles. The electrodes yield superb volumetric energy densities, being 1727 W h L−1 for Li–Se and 980 W h L−1 for Na–Se normalized by total composite mass and volume. Despite the low surface area, over 60% capacity is maintained as the current density is increased from 0.1 to 2 C (30 min charge) with Li or Na. Remarkably, the electrochemical kinetics with Li and Na are comparable, including the transition from interfacial to diffusional control.

112 citations


Network Information
Related Topics (5)
Amino acid
124.9K papers, 4M citations
83% related
Glutathione
42.5K papers, 1.8M citations
80% related
Fatty acid
74.5K papers, 2.2M citations
79% related
Aqueous solution
189.5K papers, 3.4M citations
79% related
Ascorbic acid
93.5K papers, 2.5M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,062
20222,045
2021554
2020569
2019705
2018792