scispace - formally typeset
Search or ask a question
Topic

Selenium

About: Selenium is a research topic. Over the lifetime, 21192 publications have been published within this topic receiving 429715 citations. The topic is also known as: Se & selen.


Papers
More filters
Book
01 Jan 2003
TL;DR: Shirley et al. as discussed by the authors presented a list of newly discovered and other trace elements, including aluminum, Arsenic, Cadmium, Lead, and Mercury, which they termed as "natural sources of Minerals".
Abstract: Introduction. Calcium and Phosphorus. Sodium and Chlorine (Common Salt). Potassium. Magnesium. R.L. Shirley, Sulfur. Iron. Copper and Molybdenum. Cobalt. Iodine. Manganese. Zinc. Selenium. Fluorine. Aluminum, Arsenic, Cadmium, Lead, and Mercury. Newly Discovered and Other Trace Elements. Natural Sources of Minerals. Maximum Tolerance Levels. Mineral Supplementation. Bibliography. Appendixes. Index.

1,134 citations

Journal ArticleDOI
TL;DR: The results suggest that tissue GSH-Px can be used as an indicator of animal Se status, but other factors such as age, sex, and dietary vitamin E may have to be considered.
Abstract: Experiments were conducted with male rats to quantitate the relation ship between dietary selenium (Se) intake and the amount of the enzyme glutathione peroxidase (GSH-Px) in erythrocytes and liver. Weanling male rats were fed torula yeast-based diets with 0, 0.05, 0.1, 0.5, 1.0, or 5.0 ppm Se supplemented as sodium selenite. Liver GSH-Px fell to undetectable levels (<1% of that found in the weanling rats) within 24 days in the O ppm Se group; feeding 0.1 ppm Se, or greater, caused liver GSH-Px to increase above that found in the weanling rats. The erythrocyte GSH-Px response to lack of dietary Se was somewhat smaller in magnitude and more gradual; however, only 21% of initial erythrocyte GSH-Px activity remained in the unsupplemented group after 66 days. Increased dietary Se resulted in corresponding increases of erythrocyte GSH-Px activity. Resupplementing with 0.1, 0.5, or 5.0 ppm Se elevated the depressed erythrocyte GSH-Px levels of the deficient rats. Increased dietary Se provided for both faster elevation, and higher maximal GSH-Px activity which in all cases was achieved 60 to 90 days after resupplementation. The results suggest that tissue GSH-Px can be used as an indicator of animal Se status, but other factors such as age, sex, and dietary vitamin E may have to be considered. Lack of GSH-Px in livers of Se-deficient rats may explain the liver necrosis observed when the diet is also deficient in vitamin E and sulfur-containing amino acids. J. Nutr. 104: 580-587,

1,103 citations

Journal ArticleDOI
TL;DR: There is an urgent need for more large-scale trials to assess any such beneficial effects and to provide further data on which to base more reliable estimates for intakes and plasma selenium levels that are protective.
Abstract: Objective: The intent of this review is to evaluate the scientific evidence for the assessment of adequacy of selenium status and of the requirements for selenium. From this evidence, attempts have been made to define levels of plasma selenium and dietary selenium intake, which could be used for the assessment of deficiency or adequacy of selenium status. Method: The first section briefly reviews the methods for assessment of selenium status. The second section outlines the requirements for selenium based on a number of criteria, and how these have been translated into recommended intakes of selenium. In the final section, levels of plasma selenium and dietary intake based on different criteria of adequacy have been proposed. Results and conclusion: The minimum requirement for selenium is that which prevents the deficiency disease, Keshan disease. The recommended intakes of selenium have been calculated from the requirement for optimum plasma glutathione peroxidase (GPx) activity that must, because of the hierarchy of selenoproteins, also take account of the amounts needed for normal levels of other biologically necessary selenium compounds. Whether optimal health depends upon maximization of GPx or other selenoproteins, however, has yet to be resolved, and the consequences of less-than-maximal GPx activities or mRNA levels need investigation. Intakes, higher than recommended intakes, and plasma selenium concentrations that might be protective for cancer or result in other additional health benefits have been proposed. There is an urgent need for more large-scale trials to assess any such beneficial effects and to provide further data on which to base more reliable estimates for intakes and plasma selenium levels that are protective.

717 citations

Journal ArticleDOI
TL;DR: An endemic disease was discovered in 1961 in parts of the population of Enshi County, Hubei Province of the People's Republic of China and the morbidity was almost 50% in the 248 inhabitants of the five most heavily affected villages; its cause was determined to be selenium intoxication.

705 citations

Journal ArticleDOI
TL;DR: It is apparent that the chalcogen amino acids cysteine, methionine, selenocysteines, and selenomethionine exhibit a unique biological chemistry that is the source of exciting research opportunities.
Abstract: Sulfur and selenium occur in proteins as constituents of the amino acids cysteine, methionine, selenocysteine, and selenomethionine. Recent research underscores that these amino acids are truly exceptional. Their redox activity under physiological conditions allows an amazing variety of posttranslational protein modifications, metal free redox pathways, and unusual chalcogen redox states that increasingly attract the attention of biological chemists. Unlike any other amino acid, the "redox chameleon" cysteine can participate in several distinct redox pathways, including exchange and radical reactions, as well as atom-, electron-, and hydride-transfer reactions. It occurs in various oxidation states in the human body, each of which exhibits distinctive chemical properties (e.g. redox activity, metal binding) and biological activity. The position of selenium in the periodic table between the metals and the nonmetals makes selenoproteins ideal catalysts for many biological redox transformations. It is therefore apparent that the chalcogen amino acids cysteine, methionine, selenocysteine, and selenomethionine exhibit a unique biological chemistry that is the source of exciting research opportunities.

674 citations


Network Information
Related Topics (5)
Amino acid
124.9K papers, 4M citations
83% related
Glutathione
42.5K papers, 1.8M citations
80% related
Fatty acid
74.5K papers, 2.2M citations
79% related
Aqueous solution
189.5K papers, 3.4M citations
79% related
Ascorbic acid
93.5K papers, 2.5M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,062
20222,045
2021554
2020569
2019705
2018792