scispace - formally typeset
Search or ask a question
Topic

Selenium

About: Selenium is a research topic. Over the lifetime, 21192 publications have been published within this topic receiving 429715 citations. The topic is also known as: Se & selen.


Papers
More filters
Journal ArticleDOI
TL;DR: Selenium in the form of selenomethionine is better absorbed than selenite, and plasma selenium concentration is useful in monitoring compliance and safety ofselenium supplementation as selenometrichionines but not as seenite.
Abstract: Intervention trials with different forms of selenium are under way to assess the effects of selenium supplements on the incidence of cancer and other diseases. Plasma selenium biomarkers respond to selenium administration and might be useful for assessing compliance and safety in these trials. The present study characterized the effects of selenium supplementation on plasma selenium biomarkers and urinary selenium excretion in selenium-replete subjects. Moderate (approximately 200 microg/d) to large (approximately 600 microg/d) selenium supplements in the forms sodium selenite, high-selenium yeast (yeast), and l-selenomethionine (selenomethionine) were administered. Subjects were randomized into 10 groups (placebo and three dose levels of each form of selenium). Plasma biomarkers (selenium concentration, selenoprotein P concentration, and glutathione peroxidase activity) were determined before supplementation and every 4 weeks for 16 weeks. Urinary selenium excretion was determined at 16 weeks. Supplementation with selenomethionine and yeast raised the plasma selenium concentration in a dose-dependent manner. Selenite did not. The increased selenium concentration correlated with the amount of selenomethionine administered. Neither glutathione peroxidase activity nor selenoprotein P concentration responded to selenium supplementation. Urinary selenium excretion was greater after selenomethionine than after selenite, with excretion after yeast being intermediate and not significantly different from either of the other two. We conclude that plasma selenium concentration is useful in monitoring compliance and safety of selenium supplementation as selenomethionine but not as selenite. Plasma selenium seems to reflect the selenomethionine content of yeast but not the other yeast selenium forms. As judged by urinary selenium excretion, selenium in the form of selenomethionine is better absorbed than selenite.

263 citations

Journal ArticleDOI
TL;DR: A combination of observation, medical and dietary history, and analyses for multiple trace elements is needed to pinpoint the trace element(s) involved, and it is important to differentiate whether trace element deficiency or toxicity is the primary cause of the disorder, or is secondary to other underlying diseases.

262 citations

Journal ArticleDOI
Lutz Schomburg1
TL;DR: The baseline selenium status of an individual could constitute the most important parameter modifying the outcome of selenum supplementation, which might primarily disrupt self-amplifying cycles of the endocrine–immune system interface rectifying the interaction of lymphocytes with thyroid autoantigens.
Abstract: The trace element selenium is an essential micronutrient that is required for the biosynthesis of selenocysteine-containing selenoproteins. Most of the known selenoproteins are expressed in the thyroid gland, including some with still unknown functions. Among the well-characterized selenoproteins are the iodothyronine deiodinases, glutathione peroxidases and thioredoxin reductases, enzymes involved in thyroid hormone metabolism, regulation of redox state and protection from oxidative damage. Selenium content in selenium-sensitive tissues such as the liver, kidney or muscle and expression of nonessential selenoproteins, such as the glutathione peroxidases GPx1 and GPx3, is controlled by nutritional supply. The thyroid gland is, however, largely independent from dietary selenium intake and thyroid selenoproteins are preferentially expressed. As a consequence, no explicit effects on thyroid hormone profiles are observed in healthy individuals undergoing selenium supplementation. However, low selenium status correlates with risk of goiter and multiple nodules in European women. Some clinical studies have demonstrated that selenium-deficient patients with autoimmune thyroid disease benefit from selenium supplementation, although the data are conflicting and many parameters must still be defined. The baseline selenium status of an individual could constitute the most important parameter modifying the outcome of selenium supplementation, which might primarily disrupt self-amplifying cycles of the endocrine-immune system interface rectifying the interaction of lymphocytes with thyroid autoantigens. Selenium deficiency is likely to constitute a risk factor for a feedforward derangement of the immune system-thyroid interaction, while selenium supplementation appears to dampen the self-amplifying nature of this derailed interaction.

260 citations

Journal ArticleDOI
TL;DR: Urinary monomethylated (selenosugar) and trimethylated selenium can be used as specific indices that increase within the required to low-toxic range and with a distinct toxic dose, respectively.
Abstract: Essential micronutrient selenium is excreted into the urine and/or expired after being transformed to methylated metabolites. Monomethylated selenium is excreted into the urine in response to a supply within the required to low-toxic range, whereas tri- and dimethylated selenium increase with excessive supply at a toxic dose. Here we show that the major urinary selenium metabolite within the required to low-toxic range is a selenosugar. The structure of 1β-methylseleno-N-acetyl-d-galactosamine was deduced from the spectroscopic data and confirmed by chemical synthesis. This metabolite was also detected in the liver, and an additional metabolite increased with inhibition of methylation. The latter metabolite was again a selenosugar conjugated with glutathione instead of a methyl group and was assumed to be a precursor for methylation to the former metabolite. A metabolic pathway for the urinary excretion of selenium, i.e., from the glutathione-S-conjugated selenosugar to the methylated one, was proposed. Urinary monomethylated (selenosugar) and trimethylated selenium can be used as specific indices that increase within the required to low-toxic range and with a distinct toxic dose, respectively.

260 citations


Network Information
Related Topics (5)
Amino acid
124.9K papers, 4M citations
83% related
Glutathione
42.5K papers, 1.8M citations
80% related
Fatty acid
74.5K papers, 2.2M citations
79% related
Aqueous solution
189.5K papers, 3.4M citations
79% related
Ascorbic acid
93.5K papers, 2.5M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,062
20222,045
2021554
2020569
2019705
2018792