scispace - formally typeset
Search or ask a question
Topic

Selenium

About: Selenium is a research topic. Over the lifetime, 21192 publications have been published within this topic receiving 429715 citations. The topic is also known as: Se & selen.


Papers
More filters
Journal ArticleDOI
TL;DR: The results support the hypothesis that selenium has cancer-protecting effects in man and a change of diet aimed at increasing the dietary selenum supply is suggested as a possible means of lowering the human cancer risk.

493 citations

Journal ArticleDOI
TL;DR: In this paper, the toxicity of Se can be attributed to metabolic disturbances, in addition to its pro-oxidative effects, which can be explained by the changes in the total chlorophyll concentration.
Abstract: Selenium is an essential element for antioxidation reactions in human and animals. In order to study its biological role in higher plants, ryegrass (Lolium perenne) was cultivated in a soil without Se or amended with increasing dosages of H2SeO4 (0.1, 1.0, 10.0 and 30.0 mg Se kg−1). Ryegrass was harvested twice and the yields were analyzed for antioxidative systems and growth parameters. Selenium exerted dual effects: At low concentrations it acted as an antioxidant, inhibiting lipid peroxidation, whereas at higher concentrations, it was a pro-oxidant, enhancing the accumulation of lipid peroxidation products. The antioxidative effect was associated with an increase in glutathione peroxidase (GSH-Px) activity, but not with superoxide dismutase (SOD) and αα-tocopherol, which was the only tocopherol detected. In the second yield, the diminished lipid peroxidation due to a proper Se addition coincided with promoted plant growth. The oxidative stress found at the Se addition level ≥ 10 mg kg−1 resulted in drastic yield losses. This result indicates that the toxicity of Se can be attributed, in addition to metabolic disturbances, to its pro-oxidative effects. Neither the growth-promoting nor the toxic effect of Se could be explained by the changes in the total chlorophyll concentration.

492 citations

Journal ArticleDOI
TL;DR: Plants can play vital role in overcoming Se deficiency and Se toxicity in different regions of the world, hence, detailed mechanism of Se metabolism inside the plants is necessary for designing effective Se phytoremediation and biofortification strategies.
Abstract: Selenium (Se) is an essential micronutrient for humans and animals, but lead to toxicity when taken in excessive amounts. Plants are the main source of dietary Se, but essentiality of Se for plants is still controversial. However, Se at low doses protects the plants from variety of abiotic stresses such as cold, drought, desiccation and metal stress. In animals, Se acts as an antioxidant and helps in reproduction, immune responses, thyroid hormone metabolism. Selenium is chemically similar to sulfur, hence taken up inside the plants via sulfur transporters present inside root plasma membrane, metabolized via sulfur assimilatory pathway, and volatilized into atmosphere. Selenium induced oxidative stress, distorted protein structure and function, are the main causes of Se toxicity in plants at high doses. Plants can play vital role in overcoming Se deficiency and Se toxicity in different regions of the world, hence, detailed mechanism of Se metabolism inside the plants is necessary for designing effective Se phytoremediation and biofortification strategies.

484 citations

Journal ArticleDOI
TL;DR: Results show that selenium is essential for the activity of thioredoxin reductase, explaining why this trace element is required for cell proliferation by effects on thiOREDoxin-dependent control of the intracellular redox state, ribonucleotide reduct enzyme production of deoxyribonucleotides, or activation of transcription factors.
Abstract: Selenium is an essential trace element with known antioxidant properties. Cytosolic thioredoxin reductase from mammalian cells is a dimeric flavin enzyme comprising a glutathione reductase-like equivalent elongated with 16 residues including the conserved carboxy-terminal sequence, Gly-Cys-SeCys-Gly, where SeCys is selenocysteine. Replacement of the SeCys residue by Cys in rat cytosolic thioredoxin reductase using site-directed mutagenesis and expression in Escherichia coli resulted in a functional mutant enzyme having about one percent activity with thioredoxin as a substrate through a major loss of Kcat and a shift in the pH optimum from 7 to 9. The truncated enzyme expected in selenium deficiency by the UGA mRNA codon for SeCys acting as a stop codon was also expressed. This enzyme lacking the carboxy-terminal SeCys-Gly dipeptide contained FAD but was inactive because the SeCys selenol is in the active site. These results show that selenium is essential for the activity of thioredoxin reductas...

483 citations


Network Information
Related Topics (5)
Amino acid
124.9K papers, 4M citations
83% related
Glutathione
42.5K papers, 1.8M citations
80% related
Fatty acid
74.5K papers, 2.2M citations
79% related
Aqueous solution
189.5K papers, 3.4M citations
79% related
Ascorbic acid
93.5K papers, 2.5M citations
79% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20231,062
20222,045
2021554
2020569
2019705
2018792