scispace - formally typeset
Search or ask a question
Topic

Semiconductor optical gain

About: Semiconductor optical gain is a research topic. Over the lifetime, 5997 publications have been published within this topic receiving 96505 citations.


Papers
More filters
Proceedings ArticleDOI
TL;DR: Optically pumped, external-cavity, surface emitting semiconductor lasers (also known as optically pumped semiconductor, OPS lasers, and vertical external cavity surface emitting lasers, VECSELs) generate near-diffraction limited beams from low brightness diode-array pumps as mentioned in this paper.
Abstract: Optically pumped, external-cavity, surface emitting semiconductor lasers (also known as optically pumped semiconductor lasers, OPS lasers, and vertical external cavity surface emitting lasers, VECSELs) generate near-diffraction limited beams from low brightness diode-array pumps. We have demonstrated 30 W cw at 980 nm and 15 W cw at 488 nm in a single spatial mode from these emitters and believe they can be scaled to > 100 W. Potential applications we have explored for such devices include wavelength conversion, spectral and spatial brightness conversion.

196 citations

Journal ArticleDOI
TL;DR: In this article, the influence of both compressive and tensile strain on semiconductor lasers and optical amplifiers is reevaluated in the light of recent experimental and theoretical work, which appears to adequately explain the TE and TM gain in compressive-and tensile structures, including polarizationindependent amplifiers, the behavior of visible lasers and the improved frequency characteristics of InGaAs/GaAs lasers.
Abstract: The influence of both compressive and tensile strain on semiconductor lasers and optical amplifiers is reevaluated in the light of recent experimental and theoretical work. Strain reduces the three-dimensional symmetry of the lattice and helps match the wave functions of the holes to the one-dimensional symmetry of the laser beam. It can also decrease the density of states at the valence band maximum and so reduce the carrier density required to reach threshold. These two effects appear to adequately explain the TE and TM gain in compressive and tensile structures, including polarization-independent amplifiers, the behavior of visible lasers and the improved frequency characteristics of InGaAs/GaAs lasers. In 1.5 /spl mu/m InGaAsP/InP lasers phonon-assisted Auger recombination appears to remain the dominant current path and can explain why the temperature sensitivity parameter to remains >

192 citations

Journal ArticleDOI
TL;DR: This work developed the procedures to produce a smooth, low-scattering-loss film inside the capillary, resulting in a whispering gallery mode laser with a well-defined threshold, and represents the first report of an infrared laser made using solution processing.
Abstract: Sources of coherent, monochromatic short-wavelength infrared (1-2 μm) light are essential in telecommunications, biomedical diagnosis, and optical sensing. Today’s semiconductor lasers are made by epitaxial growth on a lattice-matched single-crystal substrate. This strategy is incompatible with direct growth on silicon. Colloidal quantum dots synthesized in solution can, in contrast, be coated onto any surface. Here we show a 1.53 μm laser fabricated using a remarkably simple process: dipping a glass capillary into a colloidal suspension of semiconductor quantum dots. We developed the procedures to produce a smooth, low-scattering-loss film inside the capillary, resulting in a whispering gallery mode laser with a well-defined threshold. While there exist three prior reports of optical gain in infrared-emitting colloidal quantum dots [1, 2, 3], this work represents the first report of an infrared laser made using solution processing. We also report dλmax/dT, the temperature-sensitivity of lasing wavelength, of 0.03 nm/K, the lowest ever reported in a colloidal quantum dot system and 10 times lower than in traditional semiconductor quantum wells.

192 citations

Journal ArticleDOI
TL;DR: In this article, the authors outline the operating principles of SEMS and summarize the capabilities of devices that have been demonstrated so far, focusing on the generation of near-transform-limited sub-picosecond pulses in passively mode-locked SEMS.
Abstract: Surface-emitting semiconductor lasers can make use of external cavities and optical pumping techniques to achieve a combination of high continuous-wave output power and near-diffraction-limited beam quality that is not matched by any other type of semiconductor source. The ready access to the laser mode that the external cavity provides has been exploited for applications such as intra-cavity frequency doubling and passive mode-locking. The purpose of this Topical Review is to outline the operating principles of these versatile lasers and summarize the capabilities of devices that have been demonstrated so far. Particular attention is paid to the generation of near-transform-limited sub-picosecond pulses in passively mode-locked surface-emitting lasers, which are potentially of interest as compact sources of ultrashort pulses at high average power that can be operated readily at repetition rates of many gigahertz.

190 citations

Journal ArticleDOI
TL;DR: By using strong optical injection locking, resonance frequency enhancement in excess of 100 GHz in semiconductor lasers is reported, showing the broad applicability of the technique and that the coupling Q is the figure-of-merit for Resonance frequency enhancement.
Abstract: By using strong optical injection locking, we report resonance frequency enhancement in excess of 100 GHz in semiconductor lasers. We demonstrate this enhancement in both distributed feedback (DFB) lasers and vertical-cavity surface-emitting lasers (VCSELs), showing the broad applicability of the technique and that the coupling Q is the figure-of-merit for resonance frequency enhancement. We have also identified the key factors that cause low-frequency roll-off in injection-locked lasers. By increasing the slave laser's DC current bias, we have achieved a record intrinsic 3-dB bandwidth of 80 GHz in VCSELs.

185 citations


Network Information
Related Topics (5)
Photonic crystal
43.4K papers, 887K citations
91% related
Optical fiber
167K papers, 1.8M citations
91% related
Resonator
76.5K papers, 1M citations
87% related
Plasmon
32.5K papers, 983.9K citations
85% related
Laser
353.1K papers, 4.3M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20233
20229
20211
20201
20187
201789