scispace - formally typeset
Search or ask a question
Topic

Semiconductor optical gain

About: Semiconductor optical gain is a research topic. Over the lifetime, 5997 publications have been published within this topic receiving 96505 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the wavelength switching dynamics of two-colour semiconductor lasers with optical injection and feedback are presented, and experimental measurements are presented demonstrating that optical injection in one or both modes of these devices can induce wavelength bistability.
Abstract: The wavelength switching dynamics of two-colour semiconductor lasers with optical injection and feedback are presented. These devices incorporate slotted regions etched into the laser ridge waveguide for tailoring the output spectrum. Experimental measurements are presented demonstrating that optical injection in one or both modes of these devices can induce wavelength bistability. Measured switching dynamics with modulated optical injection are shown to be in excellent agreement with numerical simulations based on a simple rate equation model. We also demonstrate experimentally that time-delayed optical feedback can induce wavelength bistability for short external cavity lengths. Numerical simulations indicate that this two-colour optical feedback system can provide fast optical memory functionality based on injected optical pulses without the need for an external holding beam.

28 citations

Journal ArticleDOI
TL;DR: The gain filter is experimentally determine, with an equivalent parabolic gain bandwidth of up to 51 nm, for broad-band InGaAs/GaAs quantum well gain surface-emitting semiconductor laser structures capable of producing pulses down to 60 fs width when mode-locked with an optical Stark saturable absorber mirror.
Abstract: We present a method to experimentally characterize the gain filter and calculate a corresponding parabolic gain bandwidth of lasers that are described by “class A” dynamics by solving the master equation of spectral condensation for Gaussian spectra. We experimentally determine the gain filter, with an equivalent parabolic gain bandwidth of up to 51 nm, for broad-band InGaAs/GaAs quantum well gain surface-emitting semiconductor laser structures capable of producing pulses down to 60 fs width when mode-locked with an optical Stark saturable absorber mirror.

28 citations

Journal ArticleDOI
TL;DR: In this article, the authors derived a closed-form expression for the modulation bandwidth of a semiconductor quantum dot (QD) laser, which is inversely proportional to the inhomogeneous line broadening caused by the QD-size dispersion.
Abstract: We derive a closed-form expression for the upper limit for the modulation bandwidth of a semiconductor quantum dot (QD) laser. The highest possible bandwidth increases directly with overlap integral of the electron and hole wave functions in a QD, number of QD-layers, and surface density of QDs in a layer, and is inversely proportional to the inhomogeneous line broadening caused by the QD-size dispersion. At 10% QD-size fluctuations and 100% overlap, the upper limit for the modulation bandwidth in a single QD-layer laser can be as high as 60 GHz.

28 citations

Journal ArticleDOI
TL;DR: In this article, the effects of carrier-density pulsation, carrier heating, and spectral-hole burning on the conditions of stable singlemode operation in grating-tuned single-mode extended-cavity semiconductor lasers are investigated.
Abstract: In semiconductor lasers, nonlinear phenomena inside the active medium change the side-mode gain with respect to the static threshold-gain. For a given side mode, the sign and the magnitude of the change depend on the lasing-mode optical power and on the wavelength detuning from the lasing mode. If the side-mode gain is enhanced, mode-hopping can occur toward a side mode whose loss is higher than the lasing-mode one. Conversely, in the case of side-mode-gain suppression, the side-mode loss can be smaller with no mode-hop. In this paper, effects of carrier-density pulsation, carrier heating, and spectral-hole burning on the conditions of stable single-mode operation in grating-tuned single-mode extended-cavity semiconductor lasers are investigated. Taking into account the external cavity spectral selectivity and mode coupling, we present a theoretical analysis of experimental results. We perform calculations that compare well with the experimental data obtained with a 1.55-/spl mu/m extended-cavity laser.

28 citations

Journal ArticleDOI
20 Dec 2017
TL;DR: In this article, the carrier-envelope offset (CEO) frequency stabilization of an ultrafast semiconductor disk laser (SDL) has been shown to be stable in the presence of a semiconductor saturable absorber mirror.
Abstract: Optical frequency combs based on ultrafast lasers have enabled numerous scientific breakthroughs. However, their use for commercial applications is limited by the complexity and cost of femtosecond laser technology. Ultrafast semiconductor lasers might change this issue as they can be mass produced in a cost-efficient way while providing large spectral coverage from a single technology. However, it has not been proven to date if ultrafast semiconductor lasers are suitable for stabilization of their carrier-envelope offset (CEO) frequency. Here we present what we believe to be the first CEO frequency stabilization of an ultrafast semiconductor disk laser (SDL). The optically pumped SDL is passively modelocked by a semiconductor saturable absorber mirror. It operates at a repetition rate of 1.8 GHz and a center wavelength of 1034 nm. The 273 fs pulses of the oscillator are amplified to an average power level of 6 W and temporally compressed down to 120 fs. A coherent octave-spanning supercontinuum spectrum is generated in a photonic crystal fiber. The CEO frequency is detected in a standard f–to–2f interferometer and phase locked to an external reference by feedback applied to the current of the SDL pump diode. This proof-of-principle demonstrates that ultrafast SDLs are suitable for CEO stabilization and constitutes a key step for further developments of this comb technology expected in the coming years.

28 citations


Network Information
Related Topics (5)
Photonic crystal
43.4K papers, 887K citations
91% related
Optical fiber
167K papers, 1.8M citations
91% related
Resonator
76.5K papers, 1M citations
87% related
Plasmon
32.5K papers, 983.9K citations
85% related
Laser
353.1K papers, 4.3M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20233
20229
20211
20201
20187
201789