scispace - formally typeset
Search or ask a question
Topic

Semiconductor optical gain

About: Semiconductor optical gain is a research topic. Over the lifetime, 5997 publications have been published within this topic receiving 96505 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This method is used to stabilize laser frequencies and reduce linewidths by a factor of 1000 from 20 MHz to approximately 20 kHz.
Abstract: With simple optical geometries a separate resonant Fabry-Perot cavity can serve as an optical feedback element that forces a semiconductor laser automatically to lock its frequency optically to the cavity resonance. This method is used to stabilize laser frequencies and reduce linewidths by a factor of 1000 from 20 MHz to approximately 20 kHz.

515 citations

Journal ArticleDOI
TL;DR: Ultrahigh-speed tuning of an extended-cavity semiconductor laser is demonstrated, which is more than an order of magnitude faster than previously demonstrated and is facilitated in part by self-frequency shifting in the semiconductor optical amplifier.
Abstract: Ultrahigh-speed tuning of an extended-cavity semiconductor laser is demonstrated. The laser resonator comprises a unidirectional fiber-optic ring, a semiconductor optical amplifier as the gain medium, and a novel scanning filter based on a polygonal scanner. Variable tuning rates up to 1150 nm/ms (15.7-kHz repetition frequency) are demonstrated over a 70-nm wavelength span centered at 1.32 microm. This tuning rate is more than an order of magnitude faster than previously demonstrated and is facilitated in part by self-frequency shifting in the semiconductor optical amplifier. The instantaneous linewidth of the source is <0.1 nm for 9-mW cw output power and a low spontaneous-emission background of -80 dB.

497 citations

Journal ArticleDOI
TL;DR: In this paper, the steplike density-of-states of a quantum-well heterostructure can improve the operation of a semiconductor laser, which is explained in terms of the step-like density of states and the disturbed electron and phonon distributions in the quantumwell active regions.
Abstract: The various features peculiar to the operation of quantum-well semiconductor lasers are described and illustrated with data on single- and multiple-quantum-well Al x Ga 1-x As-GaAs heterostructures grown by metalorganic chemical vapor deposition (MO-CVD). Photo-pumped and p-n diode lasers (injection lasers) are described that are capable of continuous room temperature (CW 300 K) operation. The basic problems of carrier collection, thermalization, and quantum-well band filling are considered and have made clear the limits on single quantum-well laser operation and how these can be overcome with multiple quantum-well active regions. The idea that the steplike density-of-states of a quantum-well heterostructure can improve the operation of a semiconductor laser is shown to be valid. Also, it is shown that phonon participation in the operation of a quantum-well laser, which was not anticipated, is a major (even dominant) effect, with perhaps the phonon emission itself in the compact active region being stimulated. Besides the obvious freedom that quantum-well layers offer in how the active region of a semiconductor laser can be designed, quantum-well lasers are shown to exhibit a lesser sensitivity of the threshold current density on temperature, which is explained in terms of the step-like density-of-states and the disturbed electron and phonon distributions in the quantum-well active regions. Values as high as \sim437\deg C have been obtained for T 0 in the usual expression J_{th}(T) = J_{th}(0) \exp (T/T_{0}) . Since photopumped multiple-quantum-well MO-CVD Al x Ga 1-x As-GaAs heterostructures have operated as CW 300 K lasers with only 5-10 mW of photoexcitation (uncorrected for focusing and window losses, \lambda \sim 5145 A), it is suggested that quantum-well laser diodes can be made that will operate at ∼1 mA or even less excitation.

487 citations

Journal ArticleDOI
TL;DR: In this article, a self-formed semiconductor laser whose cavities are formed by strong optical scattering in highly disordered gain media is demonstrated, where the laser is made of zinc oxide polycrystalline films grown on amorphous fused silica substrates.
Abstract: A semiconductor laser whose cavities are “self-formed” due to strong optical scattering in highly disordered gain media is demonstrated. The lasers are made of zinc oxide polycrystalline films grown on amorphous fused silica substrates. Lasing occurs at an ultraviolet wavelength of ∼380 nm under optical pumping. Actual images of the microscopic laser cavities formed by multiple scattering have been captured. These results suggest the possibility of using disordered semiconductor microstructures as alternative sources of coherent light emission.

478 citations

Book
02 Feb 2001
TL;DR: In this article, a planar waveguide is proposed for optical fiber communications. But it is not shown how it can be used in the case of a single mode fiber and it cannot be shown how to be used with other fiber types.
Abstract: (NOTE: Each chapter concludes with Questions and Problems.) 1. Wave Nature of Light. Light Waves in a Homogeneous Medium. Refractive Index. Group Velocity and Group Index. Magnetic Field, Irradiance and Poynting Vector. Snell's Law and Total Internal Reflection (TIR). Fresnel's Equations. Multiple Interference and Optical Resonators. Goos-Hanchen and Optical Tunneling. Temporal and Spatial Coherence. Diffraction Principles. 2. Dielectric Waveguides and Optical Fibers. Symmetric Planar Dielectric Slab Waveguide. Modal and Waveguide Dispersion in the Planar Waveguide. Step Index Fiber. Numerical Aperture. Dispersion in Single Mode Fibers. Bit-Rate, Dispersion, Electrical and Optical Bandwidth. The Graded Index Optical Fiber. Light Absorption and Scattering. Attenuation in Optical Fibers. Fiber Manufacture. 3. Semiconductor Science and Light Emitting Diodes. Semiconductor Concepts and Energy Bands. Direct and Indirect Bandgap Semiconductors: E-k Diagrams. pn Junction Principles. The pn Junction Band Diagram. Light Emitting Diodes. LED Materials. Heterojunction High Intensity LEDs. LED Characteristics. LEDs for Optical Fiber Communications. 4. Stimulated Emission Devices Lasers. Stimulated Emission and Photon Amplification. Stimulated Emission Rate and Einstein Coefficients. Optical Fiber Amplifiers. Gas Laser: The He-Ne Laser. The Output Spectrum of a Gas Laser. LASER Oscillation Conditions. Principle of the Laser Diode. Heterostructure Laser Diodes. Elementary Laser Diode Characteristics. Steady State Semiconductor Rate Equation. Light Emitters for Optical Fiber Communications. Single Frequency Solid State Lasers. Quantum Well Devices. Vertical Cavity Surface Emitting Lasers (VCSELs). Optical Laser Amplifiers. Holography. 5. Photodetectors. Principle of the pn Junction Photodiode. Ramo's Theorem and External Photocurrent. Absorption Coefficient and Photodiode Materials. Quantum Efficiency and Responsivity. The pin Photodiode. Avalanche Photodiode. Heterojunction Photodiodes. Phototransistors. Photoconductive Detectors and Photoconductive Gain. Noise in Photodetectors. 6. Photovoltaic Devices. Solar Energy Spectrum. Photovoltaic Device Principles. pn Junction Photovoltaic I-V Characteristics. Series Resistance and Equivalent Circuit. Temperature Effects. Solar Cells Materials, Devices and Efficiencies. 7. Polarization and Modulation of Light. Polarization. Light Propagation in an Anisotropic Medium: Birefringence. Birefringent Optical Devices. Optical Activity and Circular Birefringence. Electro-Optic Effects. Integrated Optical Modulators. Acousto-Optic Modulator. Magneto-Optic Effects. Non-Linear Optics and Second Harmonic Generation. Notation and Abbreviations. Index. CD-ROM: Optoelectronics and Photonics Contents.

440 citations


Network Information
Related Topics (5)
Photonic crystal
43.4K papers, 887K citations
91% related
Optical fiber
167K papers, 1.8M citations
91% related
Resonator
76.5K papers, 1M citations
87% related
Plasmon
32.5K papers, 983.9K citations
85% related
Laser
353.1K papers, 4.3M citations
85% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20233
20229
20211
20201
20187
201789