scispace - formally typeset
Search or ask a question
Topic

Semidefinite programming

About: Semidefinite programming is a research topic. Over the lifetime, 5670 publications have been published within this topic receiving 199848 citations. The topic is also known as: SDP.


Papers
More filters
Journal ArticleDOI
Jos F. Sturm1
TL;DR: This paper describes how to work with SeDuMi, an add-on for MATLAB, which lets you solve optimization problems with linear, quadratic and semidefiniteness constraints by exploiting sparsity.
Abstract: SeDuMi is an add-on for MATLAB, which lets you solve optimization problems with linear, quadratic and semidefiniteness constraints. It is possible to have complex valued data and variables in SeDuMi. Moreover, large scale optimization problems are solved efficiently, by exploiting sparsity. This paper describes how to work with this toolbox.

7,655 citations

Journal ArticleDOI
01 Mar 1996
TL;DR: A survey of the theory and applications of semidefinite programs and an introduction to primaldual interior-point methods for their solution are given.
Abstract: In semidefinite programming, one minimizes a linear function subject to the constraint that an affine combination of symmetric matrices is positive semidefinite. Such a constraint is nonlinear and nonsmooth, but convex, so semidefinite programs are convex optimization problems. Semidefinite programming unifies several standard problems (e.g., linear and quadratic programming) and finds many applications in engineering and combinatorial optimization. Although semidefinite programs are much more general than linear programs, they are not much harder to solve. Most interior-point methods for linear programming have been generalized to semidefinite programs. As in linear programming, these methods have polynomial worst-case complexity and perform very well in practice. This paper gives a survey of the theory and applications of semidefinite programs and an introduction to primaldual interior-point methods for their solution.

3,949 citations

Journal ArticleDOI
TL;DR: This algorithm gives the first substantial progress in approximating MAX CUT in nearly twenty years, and represents the first use of semidefinite programming in the design of approximation algorithms.
Abstract: We present randomized approximation algorithms for the maximum cut (MAX CUT) and maximum 2-satisfiability (MAX 2SAT) problems that always deliver solutions of expected value at least.87856 times the optimal value. These algorithms use a simple and elegant technique that randomly rounds the solution to a nonlinear programming relaxation. This relaxation can be interpreted both as a semidefinite program and as an eigenvalue minimization problem. The best previously known approximation algorithms for these problems had performance guarantees of 1/2 for MAX CUT and 3/4 or MAX 2SAT. Slight extensions of our analysis lead to a.79607-approximation algorithm for the maximum directed cut problem (MAX DICUT) and a.758-approximation algorithm for MAX SAT, where the best previously known approximation algorithms had performance guarantees of 1/4 and 3/4, respectively. Our algorithm gives the first substantial progress in approximating MAX CUT in nearly twenty years, and represents the first use of semidefinite programming in the design of approximation algorithms.

3,932 citations

Journal ArticleDOI
TL;DR: This work considers the problem of finding a linear iteration that yields distributed averaging consensus over a network, i.e., that asymptotically computes the average of some initial values given at the nodes, and gives several extensions and variations on the basic problem.

2,692 citations

MonographDOI
01 Jun 2001
TL;DR: The authors present the basic theory of state-of-the-art polynomial time interior point methods for linear, conic quadratic, and semidefinite programming as well as their numerous applications in engineering.
Abstract: This is a book devoted to well-structured and thus efficiently solvable convex optimization problems, with emphasis on conic quadratic and semidefinite programming. The authors present the basic theory underlying these problems as well as their numerous applications in engineering, including synthesis of filters, Lyapunov stability analysis, and structural design. The authors also discuss the complexity issues and provide an overview of the basic theory of state-of-the-art polynomial time interior point methods for linear, conic quadratic, and semidefinite programming. The book's focus on well-structured convex problems in conic form allows for unified theoretical and algorithmical treatment of a wide spectrum of important optimization problems arising in applications.

2,651 citations


Network Information
Related Topics (5)
Optimization problem
96.4K papers, 2.1M citations
90% related
Optimal control
68K papers, 1.2M citations
82% related
Linear system
59.5K papers, 1.4M citations
82% related
Iterative method
48.8K papers, 1.2M citations
81% related
Bounded function
77.2K papers, 1.3M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023172
2022317
2021295
2020324
2019312
2018342