scispace - formally typeset
Search or ask a question
Topic

Semliki Forest virus

About: Semliki Forest virus is a research topic. Over the lifetime, 1867 publications have been published within this topic receiving 80121 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The general utility of the expression system is demonstrated through the expression of human transferrin receptor, mouse dihydrofolate reductase, chick lysozyme and Escherichia coli β–galactosidase.
Abstract: We have developed a novel DNA expression system, based on the Semliki Forest virus (SFV) replicon, which combines a wide choice of animal cell hosts, high efficiency and ease of use. DNA of interest is cloned into SFV plasmid vectors that serve as templates for in vitro synthesis of recombinant RNA. The RNA is transfected with virtually 100% efficiency into animal tissue culture cells by means of electroporation. Within the cell, the recombinant RNA drives its own replication and capping and leads to massive production of the heterologous protein while competing out the host protein synthesis. The expression system also includes an in vivo packaging procedure whereby recombinant RNA is packaged into infectious virus particles using cotransfection with packaging-deficient helper RNA molecules. The resulting high titer recombinant virus stock can be used to infect a wide range of animal cells with subsequent high expression of the heterologous gene product, but without expression of any structural proteins of the helper. The infected cells produce protein for up to 75 hours post infection after which the heterologous product can constitute as much as 25% of the total cell protein. The general utility of the system is demonstrated through the expression of human transferrin receptor, mouse dihydrofolate reductase, chick lysozyme and Escherichia coli beta-galactosidase.

967 citations

Journal ArticleDOI
TL;DR: The results suggest that the penetration of the viral genome into the cytosol takes place intracellularly through fusion between the limiting membrane of intrACEllular vacuoles and the membrane of viruses contained within them.
Abstract: The pathway by which semliki forest virus (SFV), a membrane-containing animal virus, enters BHK-21 cells was studied morphologically and biochemically. After attaching to the cell surface, the majority of viruses was rapidly trapped into coated pits, internalized by endocytosis in coated vesicles, and sequestered into intracellular vacuoles and lysosomes. Direct penetration of viruses through the plasma membrane was never observed. To assess the possible involvement of lysosomes in the release of the genome into the cytoplasm, the effect of five lysosomotropic agents, known to increase the lysosomal pH, was tested. All of these agents inhibited SFV infectivity and one, chloroquine (the agent studied in most detail), inhibited a very early step in the infection but had no effect on binding, endocytosis, or intracellular distribution of SFV. Thus, the inhibitory effect was concluded to be either on penetration of the nucelocapsid into the cytoplasm or on uncoating of the viral RNA. Possible mechanisms for the penetration of the genome into the cytoplasm were studied in vitro, using phospholipids-cholesterol liposomes and isolated SFV. When the pH was 6.0 or lower, efficient fusion of the viral membranes and the liposomal membranes occurred, resulting in the transfer of the nucleocapsid into the liposomes. Infection of cells could also be induced by brief low pH treatment of cells with bound SFV under conditions where the normal infection route was blocked. The results suggest that the penetration of the viral genome into the cytosol takes place intracellularly through fusion between the limiting membrane of intracellular vacuoles and the membrane of viruses contained within them. The low pH required for fusion together with the inhibitory effect of lysosomotropic agents implicate lysosomes, or other intracellular vacuoles with sufficiently low pH, as the main sites of penetration.

777 citations

Journal ArticleDOI
TL;DR: The experiments suggest that fowl plague virus enters MDCK cells by endocytosis in coated pits and coated vesicles and is transported to the lysosome where the low pH initiates a fusion reaction ultimately resulting in the transfer of the genome into the cytoplasm.
Abstract: The entry of fowl plague virus, and avian influenza A virus, into Madin-Darby canine kidney (MDCK) cells was examined both biochemically and morphologically. At low multiplicity and 0 degrees C, viruses bound to the cell surface but were not internalized. Binding was not greatly dependent on the pH of the medium and reached an equilibrium level in 60-90 min. Over 90% of the bound viruses were removed by neuraminidase but not by proteases. When cells with prebound virus were warmed to 37 degrees C, part of the virus became resistant to removal b neuraminidase, with a half-time of 10-15 min. After a brief lag period, degraded viral material was released into the medium. The neuraminidase-resistant virus was capable of infecting the cells and probably did so by an intracellular route, since ammonium chloride, a lysosomotropic agent, blocked both the infection and the degradation of viral protein. When the entry process was observed by electron microscopy, viruses were seen bound primarily to microvilli on the cell surface at 0 degrees C and, after warming at 37 degrees C, were endocytosed in coated pits, coated vesicles, and large smooth-surfaced vacuoles. Viruses were also present in smooth-surfaced invaginations and small smooth-surfaced vesicles at both temperatures. At physiological pH, no fusion of the virus with the plasma membrane was observed. When prebound virus was incubated at a pH of 5.5 or below for 1 min at 37 degrees C, fusion was, however, detected by ferritin immunolabeling. t low multiplicity, 90% of the prebound virus became neuraminidase-resistant and was presumably fused after only 30 s at low pH. These experiments suggest that fowl plague virus enters MDCK cells by endocytosis in coated pits and coated vesicles and is transported to the lysosome where the low pH initiates a fusion reaction ultimately resulting in the transfer of the genome into the cytoplasm. The entry pathway of fowl plague virus thus resembles tht earlier described for Semliki Forest virus.

671 citations

Journal ArticleDOI
TL;DR: Results show that low-pH-induced fusion is a widespread property of enveloped animal viruses and that it may play a role in the infective process, and suggested a role for the influenza hemagglutinin in the low- pH-dependent membrane fusion activity.
Abstract: Representatives of three families of enveloped viruses were shown to fuse tissue culture cells together. These were: Semliki Forest virus (SFV, a togavirus), vesicular stomatitis virus (a rhabdovirus), and two myxoviruses, fowl plaque virus and Japan influenza virus (Japan)/A/305/57). Unlike paramyxoviruses, whose fusion activity is known to occur over a broad pH range, fusion by these viruses was restricted to mildly acidic pH. The pH thresholds for the four viruses were 6.0, 6.1, 5.5, and 5.1, respectively. The precursor form of Japan influenza, which is not infectious and which contains the uncleaved hemagglutinin, had no fusion activity. This result suggested a role for the influenza hemagglutinin in the low-pH-dependent membrane fusion activity. Taken together, our results show that low-pH-induced fusion is a widespread property of enveloped animal viruses and that it may play a role in the infective process. The fusion reactions with all four viruses were fast, efficient, and easy to induce. With UV-inactivated SFV, the fusion was shown to be nonlytic and the polykaryons were viable for at least 12 h. 30 ng of SFV/1 x 10(6) BHK-21 cells were required for 50% fusion, and 250 ng sufficed to fuse the entire culture into a single polykaryon.

556 citations

Journal ArticleDOI
06 Apr 2001-Cell
TL;DR: This work describes the trace of the polypeptide chain of the SFV fusion glycoprotein, E1, derived from an electron density map at 3.5 A resolution and describes its interactions at the surface of the virus.

514 citations


Network Information
Related Topics (5)
Viral replication
33.4K papers, 1.6M citations
88% related
Virus
136.9K papers, 5.2M citations
85% related
RNA
111.6K papers, 5.4M citations
82% related
Interferon
28.9K papers, 1.2M citations
82% related
Polymerase
23.4K papers, 1M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202351
202220
202122
202018
201916
201818