scispace - formally typeset
Search or ask a question
Topic

Sensor fusion

About: Sensor fusion is a research topic. Over the lifetime, 26343 publications have been published within this topic receiving 424227 citations. The topic is also known as: multi-sensor data fusion.


Papers
More filters
Book
01 Aug 1999
TL;DR: The Basics of Target Tracking and Multi Target Tracking with an Agile Beam Radar, and Multiple Hypothesis Tracking System Design and Application.
Abstract: The Basics of Target Tracking. Sensor and Source Characteristics. Kinematic State Estimation: Filtering and Prediction. Modelling and Tracking Dynamic Targets. Passive Sensor Tracking. Basic Methods for Data Association. Advanced Methods for MTT Data Association. Attribute Data Fusion. Multiple Sensor Tracking -- Issues and Methods. Multiple Sensor Tracking -- System Implementation and Applications. Reasoning Schemes for Situation Assessment and Sensor Management. Situation Assessment. Tracking System Performance Prediction, and Evaluation. Multi Target Tracking with an Agile Beam Radar. Sensor Management. Multiple Hypothesis Tracking System Design and Application. Detection and Tracking of Dim Targets in Clutter.

2,774 citations

Journal ArticleDOI
01 Jan 1997
TL;DR: This paper provides a tutorial on data fusion, introducing data fusion applications, process models, and identification of applicable techniques.
Abstract: Multisensor data fusion is an emerging technology applied to Department of Defense (DoD) areas such as automated target recognition, battlefield surveillance, and guidance and control of autonomous vehicles, and to non-DoD applications such as monitoring of complex machinery, medical diagnosis, and smart buildings. Techniques for multisensor data fusion are drawn from a wide range of areas including artificial intelligence, pattern recognition, statistical estimation and other areas. This paper provides a tutorial on data fusion, introducing data fusion applications, process models, and identification of applicable techniques. Comments are made on the state-of-the-art in data fusion.

2,356 citations

Journal ArticleDOI
18 Jan 2016-Sensors
TL;DR: A generic deep framework for activity recognition based on convolutional and LSTM recurrent units, which is suitable for multimodal wearable sensors, does not require expert knowledge in designing features, and explicitly models the temporal dynamics of feature activations is proposed.
Abstract: Human activity recognition (HAR) tasks have traditionally been solved using engineered features obtained by heuristic processes. Current research suggests that deep convolutional neural networks are suited to automate feature extraction from raw sensor inputs. However, human activities are made of complex sequences of motor movements, and capturing this temporal dynamics is fundamental for successful HAR. Based on the recent success of recurrent neural networks for time series domains, we propose a generic deep framework for activity recognition based on convolutional and LSTM recurrent units, which: (i) is suitable for multimodal wearable sensors; (ii) can perform sensor fusion naturally; (iii) does not require expert knowledge in designing features; and (iv) explicitly models the temporal dynamics of feature activations. We evaluate our framework on two datasets, one of which has been used in a public activity recognition challenge. Our results show that our framework outperforms competing deep non-recurrent networks on the challenge dataset by 4% on average; outperforming some of the previous reported results by up to 9%. Our results show that the framework can be applied to homogeneous sensor modalities, but can also fuse multimodal sensors to improve performance. We characterise key architectural hyperparameters’ influence on performance to provide insights about their optimisation.

1,896 citations

Book
05 Dec 1996
TL;DR: This book discusses distributed detection systems, Bayesian Detection Theory, Information Theory and Distributed Hypothesis Testing, and the role of data compression in the development of knowledge representation.
Abstract: 1 Introduction.- 1.1 Distributed Detection Systems.- 1.2 Outline of the Book.- 2 Elements of Detection Theory.- 2.1 Introduction.- 2.2 Bayesian Detection Theory.- 2.3 Minimax Detection.- 2.4 Neyman-Pearson Test.- 2.5 Sequential Detection.- 2.6 Constant False Alarm Rate (CFAR) Detection.- 2.7 Locally Optimum Detection.- 3 Distributed Bayesian Detection: Parallel Fusion Network.- 3.1 Introduction.- 3.2 Distributed Detection Without Fusion.- 3.3 Design of Fusion Rules.- 3.4 Detection with Parallel Fusion Network.- 4 Distributed Bayesian Detection: Other Network Topologies.- 4.1 Introduction.- 4.2 The Serial Network.- 4.3 Tree Networks.- 4.4 Detection Networks with Feedback.- 4.5 Generalized Formulation for Detection Networks.- 5 Distributed Detection with False Alarm Rate Constraints.- 5.1 Introduction.- 5.2 Distributed Neyman-Pearson Detection.- 5.3 Distributed CFAR Detection.- 5.4 Distributed Detection of Weak Signals.- 6 Distributed Sequential Detection.- 6.1 Introduction.- 6.2 Sequential Test Performed at the Sensors.- 6.3 Sequential Test Performed at the Fusion Center.- 7 Information Theory and Distributed Hypothesis Testing.- 7.1 Introduction.- 7.2 Distributed Detection Based on Information Theoretic Criterion.- 7.3 Multiterminal Detection with Data Compression.- Selected Bibliography.

1,785 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the data fusion state of the art is proposed, exploring its conceptualizations, benefits, and challenging aspects, as well as existing methodologies.

1,684 citations


Network Information
Related Topics (5)
Feature extraction
111.8K papers, 2.1M citations
92% related
Image processing
229.9K papers, 3.5M citations
87% related
Wireless sensor network
142K papers, 2.4M citations
87% related
Artificial neural network
207K papers, 4.5M citations
87% related
Control theory
299.6K papers, 3.1M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023758
20221,712
20211,100
20201,286
20191,499
20181,354