scispace - formally typeset
Search or ask a question
Topic

Sensor node

About: Sensor node is a research topic. Over the lifetime, 20765 publications have been published within this topic receiving 317733 citations.


Papers
More filters
Journal Article
TL;DR: S-MAC as discussed by the authors is a medium access control protocol designed for wireless sensor networks, which uses three novel techniques to reduce energy consumption and support self-configuration, including virtual clusters to auto-sync on sleep schedules.
Abstract: This paper proposes S-MAC, a medium-access control (MAC) protocol designed for wireless sensor networks. Wireless sensor networks use battery-operated computing and sensing devices. A network of these devices will collaborate for a common application such as environmental monitoring. We expect sensor networks to be deployed in an ad hoc fashion, with individual nodes remaining largely inactive for long periods of time, but then becoming suddenly active when something is detected. These characteristics of sensor networks and applications motivate a MAC that is different from traditional wireless MACs such as IEEE 802.11 in almost every way: energy conservation and self-configuration are primary goals, while per-node fairness and latency are less important. S-MAC uses three novel techniques to reduce energy consumption and support self-configuration. To reduce energy consumption in listening to an idle channel, nodes periodically sleep. Neighboring nodes form virtual clusters to auto-synchronize on sleep schedules. Inspired by PAMAS, S-MAC also sets the radio to sleep during transmissions of other nodes. Unlike PAMAS, it only uses in-channel signaling. Finally, S-MAC applies message passing to reduce contention latency for sensor-network applications that require store-and-forward processing as data move through the network. We evaluate our implementation of S-MAC over a sample sensor node, the Mote, developed at University of California, Berkeley. The experiment results show that, on a source node, an 802.11-like MAC consumes 2–6 times more energy than S-MAC for traffic load with messages sent every 1–10s.

5,354 citations

Proceedings ArticleDOI
07 Nov 2002
TL;DR: S-MAC uses three novel techniques to reduce energy consumption and support self-configuration, and applies message passing to reduce contention latency for sensor-network applications that require store-and-forward processing as data move through the network.
Abstract: This paper proposes S-MAC, a medium-access control (MAC) protocol designed for wireless sensor networks Wireless sensor networks use battery-operated computing and sensing devices A network of these devices will collaborate for a common application such as environmental monitoring We expect sensor networks to be deployed in an ad hoc fashion, with individual nodes remaining largely inactive for long periods of time, but then becoming suddenly active when something is detected These characteristics of sensor networks and applications motivate a MAC that is different from traditional wireless MACs such as IEEE 80211 in almost every way: energy conservation and self-configuration are primary goals, while per-node fairness and latency are less important S-MAC uses three novel techniques to reduce energy consumption and support self-configuration To reduce energy consumption in listening to an idle channel, nodes periodically sleep Neighboring nodes form virtual clusters to auto-synchronize on sleep schedules Inspired by PAMAS, S-MAC also sets the radio to sleep during transmissions of other nodes Unlike PAMAS, it only uses in-channel signaling Finally, S-MAC applies message passing to reduce contention latency for sensor-network applications that require store-and-forward processing as data move through the network We evaluate our implementation of S-MAC over a sample sensor node, the Mote, developed at University of California, Berkeley The experiment results show that, on a source node, an 80211-like MAC consumes 2-6 times more energy than S-MAC for traffic load with messages sent every 1-10 s

5,117 citations

Proceedings ArticleDOI
09 Mar 2002
TL;DR: PEGASIS (power-efficient gathering in sensor information systems), a near optimal chain-based protocol that is an improvement over LEACH, is proposed, where each node communicates only with a close neighbor and takes turns transmitting to the base station, thus reducing the amount of energy spent per round.
Abstract: Sensor webs consisting of nodes with limited battery power and wireless communications are deployed to collect useful information from the field. Gathering sensed information in an energy efficient manner is critical to operate the sensor network for a long period of time. In W. Heinzelman et al. (Proc. Hawaii Conf. on System Sci., 2000), a data collection problem is defined where, in a round of communication, each sensor node has a packet to be sent to the distant base station. If each node transmits its sensed data directly to the base station then it will deplete its power quickly. The LEACH protocol presented by W. Heinzelman et al. is an elegant solution where clusters are formed to fuse data before transmitting to the base station. By randomizing the cluster heads chosen to transmit to the base station, LEACH achieves a factor of 8 improvement compared to direct transmissions, as measured in terms of when nodes die. In this paper, we propose PEGASIS (power-efficient gathering in sensor information systems), a near optimal chain-based protocol that is an improvement over LEACH. In PEGASIS, each node communicates only with a close neighbor and takes turns transmitting to the base station, thus reducing the amount of energy spent per round. Simulation results show that PEGASIS performs better than LEACH by about 100 to 300% when 1%, 20%, 50%, and 100% of nodes die for different network sizes and topologies.

3,731 citations

Journal ArticleDOI
TL;DR: This paper proposes S-MAC, a medium access control (MAC) protocol designed for wireless sensor networks that enables low-duty-cycle operation in a multihop network and reveals fundamental tradeoffs on energy, latency and throughput.
Abstract: This paper proposes S-MAC, a medium access control (MAC) protocol designed for wireless sensor networks. Wireless sensor networks use battery-operated computing and sensing devices. A network of these devices will collaborate for a common application such as environmental monitoring. We expect sensor networks to be deployed in an ad hoc fashion, with nodes remaining largely inactive for long time, but becoming suddenly active when something is detected. These characteristics of sensor networks and applications motivate a MAC that is different from traditional wireless MACs such as IEEE 802.11 in several ways: energy conservation and self-configuration are primary goals, while per-node fairness and latency are less important. S-MAC uses a few novel techniques to reduce energy consumption and support self-configuration. It enables low-duty-cycle operation in a multihop network. Nodes form virtual clusters based on common sleep schedules to reduce control overhead and enable traffic-adaptive wake-up. S-MAC uses in-channel signaling to avoid overhearing unnecessary traffic. Finally, S-MAC applies message passing to reduce contention latency for applications that require in-network data processing. The paper presents measurement results of S-MAC performance on a sample sensor node, the UC Berkeley Mote, and reveals fundamental tradeoffs on energy, latency and throughput. Results show that S-MAC obtains significant energy savings compared with an 802.11-like MAC without sleeping.

2,843 citations

Journal ArticleDOI
01 May 2009
TL;DR: This paper breaks down the energy consumption for the components of a typical sensor node, and discusses the main directions to energy conservation in WSNs, and presents a systematic and comprehensive taxonomy of the energy conservation schemes.
Abstract: In the last years, wireless sensor networks (WSNs) have gained increasing attention from both the research community and actual users. As sensor nodes are generally battery-powered devices, the critical aspects to face concern how to reduce the energy consumption of nodes, so that the network lifetime can be extended to reasonable times. In this paper we first break down the energy consumption for the components of a typical sensor node, and discuss the main directions to energy conservation in WSNs. Then, we present a systematic and comprehensive taxonomy of the energy conservation schemes, which are subsequently discussed in depth. Special attention has been devoted to promising solutions which have not yet obtained a wide attention in the literature, such as techniques for energy efficient data acquisition. Finally we conclude the paper with insights for research directions about energy conservation in WSNs.

2,546 citations


Network Information
Related Topics (5)
Wireless sensor network
142K papers, 2.4M citations
96% related
Wireless network
122.5K papers, 2.1M citations
92% related
Wireless
133.4K papers, 1.9M citations
92% related
Network packet
159.7K papers, 2.2M citations
92% related
Node (networking)
158.3K papers, 1.7M citations
89% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202357
2022167
2021591
2020717
2019922
2018992