scispace - formally typeset
Search or ask a question
Topic

Sequential decoding

About: Sequential decoding is a research topic. Over the lifetime, 8667 publications have been published within this topic receiving 204271 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: A new interleaver design for turbo codes with short block length based on the distance spectrum of the code and the correlation between the information input data and the soft output of each decoder corresponding to its parity bits is described.
Abstract: The performance of a turbo code with short block length depends critically on the interleaver design. There are two major criteria in the design of an interleaver: the distance spectrum of the code and the correlation between the information input data and the soft output of each decoder corresponding to its parity bits. This paper describes a new interleaver design for turbo codes with short block length based on these two criteria. A deterministic interleaver suitable for turbo codes is also described. Simulation results compare the new interleaver design to different existing interleavers.

184 citations

Journal ArticleDOI
TL;DR: An iterative algorithm is presented for soft-input soft-output (SISO) decoding of Reed-Solomon (RS) codes that uses the sum-product algorithm (SPA) in conjunction with a binary parity-check matrix of the RS code.
Abstract: An iterative algorithm is presented for soft-input soft-output (SISO) decoding of Reed-Solomon (RS) codes. The proposed iterative algorithm uses the sum-product algorithm (SPA) in conjunction with a binary parity-check matrix of the RS code. The novelty is in reducing a submatrix of the binary parity-check matrix that corresponds to less reliable bits to a sparse nature before the SPA is applied at each iteration. The proposed algorithm can be geometrically interpreted as a two-stage gradient descent with an adaptive potential function. This adaptive procedure is crucial to the convergence behavior of the gradient descent algorithm and, therefore, significantly improves the performance. Simulation results show that the proposed decoding algorithm and its variations provide significant gain over hard-decision decoding (HDD) and compare favorably with other popular soft-decision decoding methods

184 citations

Journal ArticleDOI
TL;DR: The proposed algorithm has almost the same complexity as the standard iterative decoding, however, it has better performance andSimulations show that the error rate can be decreased by several orders of magnitude using the proposed algorithm.
Abstract: This paper investigates decoding of low-density parity-check (LDPC) codes over the binary erasure channel (BEC). We study the iterative and maximum-likelihood (ML) decoding of LDPC codes on this channel. We derive bounds on the ML decoding of LDPC codes on the BEC. We then present an improved decoding algorithm. The proposed algorithm has almost the same complexity as the standard iterative decoding. However, it has better performance. Simulations show that we can decrease the error rate by several orders of magnitude using the proposed algorithm. We also provide some graph-theoretic properties of different decoding algorithms of LDPC codes over the BEC which we think are useful to better understand the LDPC decoding methods, in particular, for finite-length codes.

184 citations

Journal ArticleDOI
TL;DR: This letter presents the first successful method for iterative stochastic decoding of state-of-the-art low-density parity-check (LDPC) codes and has a significant potential for high-throughput and/or low complexity iterative decoding.
Abstract: This letter presents the first successful method for iterative stochastic decoding of state-of-the-art low-density parity-check (LDPC) codes. The proposed method shows the viability of the stochastic approach for decoding LDPC codes on factor graphs. In addition, simulation results for a 200 and a 1024 length LDPC code demonstrate the near-optimal performance of this method with respect to sum-product decoding. The proposed method has a significant potential for high-throughput and/or low complexity iterative decoding.

184 citations

Journal ArticleDOI
TL;DR: A stopping criterion which reduces the average number of iterations at the expense of very little performance degradation is proposed for this combined decoding approach to bridge the error performance gap between belief propagation decoding which remains suboptimum, and maximum likelihood decoding which is too complex to be implemented for the codes considered.
Abstract: In this paper, reliability based decoding is combined with belief propagation (BP) decoding for low-density parity check (LDPC) codes. At each iteration, the soft output values delivered by the BP algorithm are used as reliability values to perform reduced complexity soft decision decoding of the code considered. This approach allows to bridge the error performance gap between belief propagation decoding which remains suboptimum, and maximum likelihood decoding which is too complex to be implemented for the codes considered. Trade-offs between decoding complexity and error performance are also investigated. In particular, a stopping criterion which reduces the average number of iterations at the expense of very little performance degradation is proposed for this combined decoding approach. Simulation results for several Gallager (1963, 1968) LDPC codes and different set cyclic codes of hundreds of information bits are given and elaborated.

183 citations


Network Information
Related Topics (5)
MIMO
62.7K papers, 959.1K citations
90% related
Fading
55.4K papers, 1M citations
90% related
Base station
85.8K papers, 1M citations
89% related
Wireless network
122.5K papers, 2.1M citations
87% related
Wireless
133.4K papers, 1.9M citations
86% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202351
2022112
202124
202026
201922
201832