scispace - formally typeset
Search or ask a question
Topic

Serine protease

About: Serine protease is a research topic. Over the lifetime, 6531 publications have been published within this topic receiving 247745 citations. The topic is also known as: serine protease & serine-type peptidase.


Papers
More filters
Journal ArticleDOI
TL;DR: The alpha/beta hydrolase fold as mentioned in this paper is common to several hydrolytic enzymes of widely differing phylogenetic origin and catalytic function, including the serine protease catalytic triad.
Abstract: We have identified a new protein fold--the alpha/beta hydrolase fold--that is common to several hydrolytic enzymes of widely differing phylogenetic origin and catalytic function. The core of each enzyme is similar: an alpha/beta sheet, not barrel, of eight beta-sheets connected by alpha-helices. These enzymes have diverged from a common ancestor so as to preserve the arrangement of the catalytic residues, not the binding site. They all have a catalytic triad, the elements of which are borne on loops which are the best-conserved structural features in the fold. Only the histidine in the nucleophile-histidine-acid catalytic triad is completely conserved, with the nucleophile and acid loops accommodating more than one type of amino acid. The unique topological and sequence arrangement of the triad residues produces a catalytic triad which is, in a sense, a mirror-image of the serine protease catalytic triad. There are now four groups of enzymes which contain catalytic triads and which are related by convergent evolution towards a stable, useful active site: the eukaryotic serine proteases, the cysteine proteases, subtilisins and the alpha/beta hydrolase fold enzymes.

1,891 citations

Journal ArticleDOI
TL;DR: This article will review recent work on the mechanism and specificity of chymotrypsin-like enzymes, with the occasional references to pertinent experiments with subtilisin.
Abstract: Almost one-third of all proteases can be classified as serine proteases, named for the nucleophilic Ser residue at the active site. This mechanistic class was originally distinguished by the presence of the AspHis-Ser “charge relay” system or “catalytic triad”.1 The Asp-His-Ser triad can be found in at least four different structural contexts, indicating that this catalytic machinery has evolved on at least four separate occasions.2 These four clans of serine proteases are typified by chymotrypsin, subtilisin, carboxypeptidase Y, and Clp protease (MEROPS nomenclature;3 Table 1). More recently, serine proteases with novel catalytic triads and dyads have been discovered, including Ser-His-Glu, Ser-Lys/His, His-Ser-His, and N-terminal Ser.2 Several of these novel serine proteases are subjects of accompanying articles in this issue. This article will review recent work on the mechanism and specificity of chymotrypsin-like enzymes, with the occasional references to pertinent experiments with subtilisin. Chymotrypsin-like proteases are the most abundant in nature, with over 240 proteases recognized in the MEROPS database.3 * E-mail: hedstrom@brandeis.edu; phone: 781-736-2333; FAX: 781-736-2349. 4501 Chem. Rev. 2002, 102, 4501−4523

1,615 citations

Journal Article
TL;DR: The role of thrombin in such processes as wound healing and the evidence implicating PAR-1 in vascular disorders and cancer are described and advances in the understanding ofPAR-1-mediated intracellular signaling and receptor desensitization are identified.
Abstract: Proteinase-activated receptors are a recently described, novel family of seven-transmembrane G-protein-coupled receptors. Rather then being stimulated through ligand receptor occupancy, activation is initiated by cleavage of the N terminus of the receptor by a serine protease resulting in the generation of a new tethered ligand that interacts with the receptor within extracellular loop-2. To date, four proteinase-activated receptors (PARs) have been identified, with distinct N-terminal cleavage sites and tethered ligand pharmacology. In addition to the progress in the generation of PAR-1 antagonists, we describe the role of thrombin in such processes as wound healing and the evidence implicating PAR-1 in vascular disorders and cancer. We also identify advances in the understanding of PAR-1-mediated intracellular signaling and receptor desensitization. The cellular functions, signaling events, and desensitization processes involved in PAR-2 activation are also assessed. However, other major aspects of PAR-2 are highlighted, in particular the ability of several serine protease enzymes, in addition to trypsin, to function as activators of PAR-2. The likely physiological and pathophysiological roles for PAR-2 in skin, intestine, blood vessels, and the peripheral nervous system are considered in the context of PAR-2 activation by multiple serine proteases. The recent discovery of PAR-3 and PAR-4 as additional thrombin-sensitive PARs further highlights the complexity in assessing the effects of thrombin in several different systems, an issue that remains to be fully addressed. These discoveries have also highlighted possible PAR–PAR interactions at both functional and molecular levels. The future identification of other PARs and their modes of activation are an important future direction for this expanding field of study.

1,173 citations

Journal ArticleDOI
22 Feb 1990-Nature
TL;DR: The X-ray structure of the Mucor miehei triglyceride lipase is reported and the atomic model obtained reveals a Ser .. His .. Asp trypsin-like catalytic triad with an active serine buried under a short helical fragment of a long surface loop.
Abstract: True lipases attach triacylglycerols and act at an oil-water interface; they constitute a ubiquitous group of enzymes catalysing a wide variety of reactions, many with industrial potential. But so far the three-dimensional structure has not been reported for any lipase. Here we report the X-ray structure of the Mucor miehei triglyceride lipase and describe the atomic model obtained at 3.1 A resolution and refined to 1.9 A resolution. It reveals a Ser..His..Asp trypsin-like catalytic triad with an active serine buried under a short helical fragment of a long surface loop.

1,149 citations

Journal ArticleDOI
TL;DR: HtrA2 is a Smac-like inhibitor of IAP activity with a serine protease-dependent cell death-inducing activity, which is neither accompanied by a significant increase in caspase activity nor inhibited by casp enzyme inhibitors, including XIAP.

1,133 citations


Network Information
Related Topics (5)
Peptide sequence
84.1K papers, 4.3M citations
93% related
Amino acid
124.9K papers, 4M citations
89% related
Signal transduction
122.6K papers, 8.2M citations
88% related
Gene expression
113.3K papers, 5.5M citations
87% related
Cell culture
133.3K papers, 5.3M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
2023138
2022284
2021143
2020169
2019160
2018137