scispace - formally typeset
Search or ask a question

Showing papers on "Serotonin published in 2015"


Journal ArticleDOI
TL;DR: Gut microbiota acting through SCFAs are important determinants of enteric 5‐HT production and homeostasis through an effect of short‐chain fatty acids on enterochromaffin cells.
Abstract: Gut microbiota alterations have been described in several diseases with altered gastrointestinal (GI) motility, and awareness is increasing regarding the role of the gut microbiome in modulating GI function. Serotonin [5-hydroxytryptamine (5-HT)] is a key regulator of GI motility and secretion. To determine the relationship among gut microbes, colonic contractility, and host serotonergic gene expression, we evaluated mice that were germ-free (GF) or humanized (HM; ex-GF colonized with human gut microbiota). 5-HT reduced contractile duration in both GF and HM colons. Microbiota from HM and conventionally raised (CR) mice significantly increased colonic mRNAs Tph1 [(tryptophan hydroxylase) 1, rate limiting for mucosal 5-HT synthesis; P < 0.01] and chromogranin A (neuroendocrine secretion; P < 0.01), with no effect on monoamine oxidase A (serotonin catabolism), serotonin receptor 5-HT4, or mouse serotonin transporter. HM and CR mice also had increased colonic Tph1 protein (P < 0.05) and 5-HT concentrations (GF, 17 ± 3 ng/mg; HM, 25 ± 2 ng/mg; and CR, 35 ± 3 ng/mg; P < 0.05). Enterochromaffin (EC) cell numbers (cells producing 5-HT) were unchanged. Short-chain fatty acids (SCFAs) promoted TPH1 transcription in BON cells (human EC cell model). Thus, gut microbiota acting through SCFAs are important determinants of enteric 5-HT production and homeostasis.

774 citations


Journal ArticleDOI
TL;DR: It is found that Tph1-deficient mice fed a high-fat diet (HFD) are protected from obesity, insulin resistance and nonalcoholic fatty liver disease (NAFLD) while exhibiting greater energy expenditure by BAT.
Abstract: Mitochondrial uncoupling protein 1 (UCP1) is enriched within interscapular brown adipose tissue (iBAT) and beige (also known as brite) adipose tissue, but its thermogenic potential is reduced with obesity and type 2 diabetes for reasons that are not understood. Serotonin (5-hydroxytryptamine, 5-HT) is a highly conserved biogenic amine that resides in non-neuronal and neuronal tissues that are specifically regulated via tryptophan hydroxylase 1 (Tph1) and Tph2, respectively. Recent findings suggest that increased peripheral serotonin and polymorphisms in TPH1 are associated with obesity; however, whether this is directly related to reduced BAT thermogenesis and obesity is not known. We find that Tph1-deficient mice fed a high-fat diet (HFD) are protected from obesity, insulin resistance and nonalcoholic fatty liver disease (NAFLD) while exhibiting greater energy expenditure by BAT. Small-molecule chemical inhibition of Tph1 in HFD-fed mice mimics the benefits ascribed to Tph1 genetic deletion, effects that depend on UCP1-mediated thermogenesis. The inhibitory effects of serotonin on energy expenditure are cell autonomous, as serotonin blunts β-adrenergic induction of the thermogenic program in brown and beige adipocytes in vitro. As obesity increases peripheral serotonin, the inhibition of serotonin signaling or its synthesis in adipose tissue may be an effective treatment for obesity and its comorbidities.

382 citations


Journal ArticleDOI
TL;DR: A model whereby insufficient levels of vitamin D, EPA, or DHA, in combination with genetic factors and at key periods during development, would lead to dysfunctional serotonin activation and function is proposed and suggests that optimizing vitamin D and marine omega‐3 fatty acid intake may help prevent and modulate the severity of brain dysfunction.
Abstract: Serotonin regulates a wide variety of brain functions and behaviors. Here, we synthesize previous findings that serotonin regulates executive function, sensory gating, and social behavior and that attention deficit hyperactivity disorder, bipolar disorder, schizophrenia, and impulsive behavior all share in common defects in these functions. It has remained unclear why supplementation with omega-3 fatty acids and vitamin D improve cognitive function and behavior in these brain disorders. Here, we propose mechanisms by which serotonin synthesis, release, and function in the brain are modulated by vitamin D and the 2 marine omega-3 fatty acids, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Brain serotonin is synthesized from tryptophan by tryptophan hydroxylase 2, which is transcriptionally activated by vitamin D hormone. Inadequate levels of vitamin D (∼70% of the population) and omega-3 fatty acids are common, suggesting that brain serotonin synthesis is not optimal. We propose mechanisms by which EPA increases serotonin release from presynaptic neurons by reducing E2 series prostaglandins and DHA influences serotonin receptor action by increasing cell membrane fluidity in postsynaptic neurons. We propose a model whereby insufficient levels of vitamin D, EPA, or DHA, in combination with genetic factors and at key periods during development, would lead to dysfunctional serotonin activation and function and may be one underlying mechanism that contributes to neuropsychiatric disorders and depression. This model suggests that optimizing vitamin D and marine omega-3 fatty acid intake may help prevent and modulate the severity of brain dysfunction.

308 citations


Journal ArticleDOI
TL;DR: An update on the role of 5‐HT in biological functions with a particular focus on immune activation and inflammation is provided.
Abstract: Serotonin or 5-hydroxytryptamine (5-HT) is a neurotransmitter and hormone that contributes to the regulation of various physiological functions by its actions in the central nervous system (CNS) and in the respective organ systems. Peripheral 5-HT is predominantly produced by enterochromaffin (EC) cells of the gastrointestinal (GI) tract. These gut-resident cells produce much more 5-HT than all neuronal and other sources combined, establishing EC cells as the main source of this biogenic amine in the human body. Peripheral 5-HT is also a potent immune modulator and affects various immune cells through its receptors and via the recently identified process of serotonylation. Alterations in 5-HT signalling have been described in inflammatory conditions of the gut, such as inflammatory bowel disease. The association between 5-HT and inflammation, however, is not limited to the gut, as changes in 5-HT levels have also been reported in patients with allergic airway inflammation and rheumatoid arthritis. Based on searches for terms such as '5-HT', 'EC cell', 'immune cells' and 'inflammation' in pubmed.gov as well as by utilizing pertinent reviews, the current review aims to provide an update on the role of 5-HT in biological functions with a particular focus on immune activation and inflammation.

260 citations


Journal ArticleDOI
TL;DR: The first serotonin crystal structures not only provide the first evidence of serotonin receptor topography but also provide mechanistic explanations into functional selectivity or biased agonism for driving rational drug design for novel therapeutics incorporating biased signaling.

245 citations


Journal ArticleDOI
TL;DR: The serotonin hypothesis of depression has not been clearly substantiated and was eventually achieved “conspiracy theory” status, whose avowed purpose was to enable industry to market selective serotonin reuptake inhibitors (SSRIs) to a gullible public.

236 citations


Journal ArticleDOI
TL;DR: Serotonin transmission is elevated in multiple depressive phenotypes, including melancholia, a subtype associated with sustained cognition, and the serotonergic system evolved to regulate energy, which explains why SSRIs have a therapeutic delay.

220 citations


Journal ArticleDOI
TL;DR: 5-HT regulates white and brown adipose tissue function and treatment with an Htr2a antagonist reduces lipid accumulation in 3T3-L1 adipocytes, suggesting important roles for adipocyte-derived 5-HT in controlling energy homeostasis.
Abstract: Central serotonin (5-HT) is an anorexigenic neurotransmitter in the brain. However, accumulating evidence suggests peripheral 5-HT may affect organismal energy homeostasis. Here we show 5-HT regulates white and brown adipose tissue function. Pharmacological inhibition of 5-HT synthesis leads to inhibition of lipogenesis in epididymal white adipose tissue (WAT), induction of browning in inguinal WAT and activation of adaptive thermogenesis in brown adipose tissue (BAT). Mice with inducible Tph1 KO in adipose tissues exhibit a similar phenotype as mice in which 5-HT synthesis is inhibited pharmacologically, suggesting 5-HT has localized effects on adipose tissues. In addition, Htr3a KO mice exhibit increased energy expenditure and reduced weight gain when fed a high-fat diet. Treatment with an Htr2a antagonist reduces lipid accumulation in 3T3-L1 adipocytes. These data suggest important roles for adipocyte-derived 5-HT in controlling energy homeostasis.

184 citations


Journal ArticleDOI
TL;DR: The pharmacological profiles of compounds that derived from these strategies and have been recently tested in clinical trials are reviewed and future directions for antidepressant research are outlined.

182 citations


Journal ArticleDOI
TL;DR: The impact of the peripheral serotonin on the regulation of function of the organs involved in glucose and lipid homeostasis is reviewed.

178 citations


Journal ArticleDOI
01 Oct 2015-Brain
TL;DR: It is concluded that the raphe nuclei are affected in a subgroup of early drug-naïve Parkinson's disease patients and that reduced raphe serotonin transporter availability is associated with the severity of resting tremor but not non-motor symptoms.
Abstract: Post-mortem and neuroimaging studies suggest that the serotonergic system, which originates from the brainstem raphe nuclei, is disrupted in Parkinson’s disease. This could contribute to the occurrence of non-motor symptoms and tremor, which are only partially explained by dopamine loss. However, the level of involvement of the serotonergic raphe nuclei in early Parkinson’s disease is still debated. 123I-FP-CIT single photon emission computed tomography is a marker of dopamine and serotonin transporter availability. While 123I-FP-CIT binds primarily to dopamine transporters in the striatum, its binding in the brainstem raphe nuclei reflects serotonin transporter availability. We interrogated baseline single photon emission computed tomography scans of subjects recruited by the Parkinson’s Progression Markers Initiative to determine: (i) the integrity of the brainstem raphe nuclei in early Parkinson’s disease; and (ii) whether raphe serotonin transporter levels correlate with severity of tremor and symptoms of fatigue, depression, and sleep disturbance. Three hundred and forty-five patients with early drug-naive Parkinson’s disease, 185 healthy controls, and 56 subjects with possible Parkinson’s disease without evidence of dopaminergic deficit were included. In the Parkinson’s disease cohort, 37 patients had a tremulous, 106 patients had a pure akinetic-rigid, and 202 had a mixed phenotype. Patients with Parkinson’s disease had significantly lower serotonin transporter availability in the brainstem raphe nuclei compared to controls ( P < 0.01) and subjects without evidence of dopaminergic deficit ( P < 0.05). However, only 13% of patients with Parkinson’s disease individually had reduced signals. Raphe serotonin transporter availability over the entire Parkinson’s disease cohort were associated with rest tremor amplitude (β = −0.106, P < 0.05), rest tremor constancy (β = −0.109, P < 0.05), and index of rest tremor severity (β = −0.104, P < 0.05). The tremulous Parkinson’s disease subgroup had significantly lower raphe serotonin transporter availability but less severe striatal dopaminergic deficits compared to akinetic-rigid patients with no resting tremor ( P < 0.05). In tremulous patients, raphe serotonin transporter availability was also associated with rest tremor constancy (β = −0.380, P < 0.05) and index of rest tremor severity (β = −0.322, P < 0.05). There was no association between raphe serotonin transporter availability and fatigue, depression, excessive daytime sleepiness, or rapid eye movement sleep behaviour disorder in early Parkinson’s disease. We conclude that the raphe nuclei are affected in a subgroup of early drug-naive Parkinson’s disease patients and that reduced raphe serotonin transporter availability is associated with the severity of resting tremor but not non-motor symptoms. * Abbreviations : 123I-FP-CIT : 123-ioflupane-fluoropropyl-carbomethoxy-3-beta-4-iodophenyltropane SPECT : single photon emission computed tomography SWEDD : subjects without evidence of dopaminergic deficit

Journal ArticleDOI
TL;DR: The binding profile of NBOMe drugs predicts strong hallucinogenic effects, similar to LSD, but possibly more stimulant properties because of α1 receptor interactions.

Journal ArticleDOI
TL;DR: It is found that selectively increasing serotonergic neuronal activity in wild-type mice is anxiogenic and reduces floating in the forced-swim test, whereas inhibition has no effect on the same measures, and opposing consequences of dorsal versus median raphéSerotonergic neuron inhibition on floating behavior are identified, together suggesting that medianRaphé hyperactivity increases anxiety, whereas a low dorsal/median raphés activity ratio increases depression-like behavior.

Journal ArticleDOI
TL;DR: Deleted the serotonin 1A receptor (5HT1AR) specifically from DG GCs and found that the effects of the SSRI fluoxetine on behavior and the hypothalamic-pituitary-adrenal (HPA) axis were abolished, indicating that both mature DGGCs and young abGCs must be engaged for an antidepressant response.
Abstract: Selective serotonin reuptake inhibitors (SSRIs) are widely used antidepressants, but the mechanisms by which they influence behavior are only partially resolved. Adult hippocampal neurogenesis is necessary for some of the responses to SSRIs, but it is not known whether mature dentate gyrus granule cells (DG GCs) also contribute. We deleted the serotonin 1A receptor (5HT1AR, a receptor required for the SSRI response) specifically from DG GCs and found that the effects of the SSRI fluoxetine on behavior and the hypothalamic-pituitary-adrenal (HPA) axis were abolished. By contrast, mice lacking 5HT1ARs only in young adult-born GCs (abGCs) showed normal fluoxetine responses. Notably, 5HT1AR-deficient mice engineered to express functional 5HT1ARs only in DG GCs responded to fluoxetine, indicating that 5HT1ARs in DG GCs are sufficient to mediate an antidepressant response. Taken together, these data indicate that both mature DG GCs and young abGCs must be engaged for an antidepressant response.

Journal ArticleDOI
TL;DR: This review revaluates serotonin involvement in several types of cancer and at different stages of their progression, suggesting that the role of serotonin on tumour growth is concentration-dependent.
Abstract: Serotonin (5-hydroxytryptamine, 5-HT) is a biogenic monoamine that acts as a neurotransmitter in the central nervous system, local mediator in the gut and vasoactive agent in the blood. Serotonin exerts its multiple, sometimes opposing actions through interaction with a multiplicity of receptors coupled to various signalling pathways. In addition to its well-known functions, serotonin has been shown to be a mitogenic factor for a wide range of normal and tumoral cells. Serotonin exhibits a growth stimulatory effect in aggressive cancers and carcinoids more often through 5- HT 1 and 5-HT 2 receptors. In contrast, low doses of serotonin can inhibit tumour growth via the decrease of blood supply to the tumour, suggesting that the role of serotonin on tumour growth is concentration-dependent. Data are also available on serotonin involvement in cancer cell migration, metastatic processes and as a mediator of angiogenesis. Moreover, the progression of some tumours is accompanied by a dysregulation of the pattern of serotonin receptor expressions. Serum serotonin level was found to be suitable for prognosis evaluation of urothelial carcinoma in the urinary bladder, adenocarcinoma of the prostate and renal cell carcinoma. In some cases, antagonists of serotonin receptors, inhibitors of selective serotonin transporter and of serotonin synthesis have been successfully used to prevent cancer cell growth. This review revaluates serotonin involvement in several types of cancer and at different stages of their progression.

Journal ArticleDOI
17 Mar 2015-PLOS ONE
TL;DR: Test whether greater DNA methylation in specific CpG sites at the serotonin transporter promoter in peripheral cells is associated with childhood trauma, depression, and smaller hippocampal volume provides some indications that site-specific serotonin transporter methylation may be a biomarker for serotonin-associated stress-related psychopathology.
Abstract: Serotonin plays an important role in the etiology of depression. Serotonin is also crucial for brain development. For instance, animal studies have demonstrated that early disruptions in the serotonin system affect brain development and emotion regulation in later life. A plausible explanation is that environmental stressors reprogram the serotonin system through epigenetic processes by altering serotonin system gene expression. This in turn may affect brain development, including the hippocampus, a region with dense serotonergic innervations and important in stress-regulation. The aim of this study was to test whether greater DNA methylation in specific CpG sites at the serotonin transporter promoter in peripheral cells is associated with childhood trauma, depression, and smaller hippocampal volume. We were particularly interested in those CpG sites whose state of methylation in peripheral cells had previously been associated with in vivo measures of brain serotonin synthesis. Thirty-three adults with Major Depressive Disorder (MDD) (23 females) and 36 matched healthy controls (21 females) were included in the study. Depressive symptoms, childhood trauma, and high-resolution structural MRI for hippocampal volume were assessed. Site-specific serotonin transporter methylation was assessed using pyrosequencing. Childhood trauma, being male, and smaller hippocampal volume were independently associated with greater peripheral serotonin transporter methylation. Greater serotonin transporter methylation in the depressed group was observed only in SSRI-treated patients. These results suggest that serotonin transporter methylation may be involved in physiological gene-environment interaction in the development of stress-related brain alterations. The results provide some indications that site-specific serotonin transporter methylation may be a biomarker for serotonin-associated stress-related psychopathology.

01 Jan 2015
TL;DR: In this paper, the effects of treatment with desipramine hydrochloride on brain 5-HT2 receptors in depressed patients using positron emission tomography (PET) and fluorine-18 (18 F)labeled setoperone.
Abstract: Background: The neuroreceptor changes involved in therapeutic efficacy of various antidepressants remain unclear. Preclinical studies have shown that long-term administration of various antidepressants causes downregulation of brain serotonin 2 (5-HT2) receptors in rodents, but it is unknown if similar changes occur following antidepressant treatment in depressed patients. Our purpose, therefore, was to assess the effects of treatment with desipramine hydrochloride on brain 5-HT2 receptors in depressed patients using positron emission tomography (PET) and fluorine-18 ( 18 F)‐labeled setoperone. Methods: Eleven patients who met DSM-IV criteria for major depression as determined by a structured clinical interview for DSM-III-R diagnosis and suitable for treatment with desipramine were recruited. Ten patients underwent a PET scan before and another after 3 to 4 weeks of treatment with desipramine. Results: Eight of the 10 patients responded to desipramine treatment as indicated by more than 50% decrease in Hamilton Depression Rating Scale scores. Depressed patients showed a significant decrease in 5-HT2 receptor binding as measured by setoperone binding in frontal, temporal, parietal, and occipital cortical regions following desipramine treatment. The decrease in 5-HT2 receptor binding was observed bilaterally and was particularly prominent in frontal cortex. Conclusions: Depressed patients showed a significant reduction in available 5-HT2 receptors in the brain following desipramine treatment, but it is unknown if this change in 5-HT2 receptors is due to clinical improvement or an effect of desipramine that is unrelated to clinical status. Arch Gen Psychiatry. 1999;56:705-711

Journal ArticleDOI
TL;DR: Light is shed on the mechanisms and potential therapeutic model by which serotonin plays a critical role in the maintenance of mood, and an overview of recent genetically modified mouse models that differ in serotonin availability are given.

Journal ArticleDOI
TL;DR: Dynamin is a guanosine triphosphatase that is responsible for internalization of melanocortin 4 receptors and prostaglandin receptors and is up‐regulated in a mouse model of cancer anorexia.
Abstract: Anorexia is commonly present in persons with cancer and a major component of cancer cachexia. There are multiple causes of anorexia in cancer. Peripherally, these can be due to (i) substances released from or by the tumour, e.g. pro-inflammatory cytokines, lactate, and parathormone-related peptide; (ii) tumours causing dysphagia or altering gut function; (iii) tumours altering nutrients, e.g. zinc deficiency; (iv) tumours causing hypoxia; (v) increased peripheral tryptophan leading to increased central serotonin; or (vi) alterations of release of peripheral hormones that alter feeding, e.g. peptide tyrosine tyrosine and ghrelin. Central effects include depression and pain, decreasing the desire to eat. Within the central nervous system, tumours create multiple alterations in neurotransmitters, neuropeptides, and prostaglandins that modulate feeding. Many of these neurotransmitters appear to produce their anorectic effects through the adenosine monophosphate kinase/methylmalonyl coenzyme A/fatty acid system in the hypothalamus. Dynamin is a guanosine triphosphatase that is responsible for internalization of melanocortin 4 receptors and prostaglandin receptors. Dynamin is up-regulated in a mouse model of cancer anorexia. A number of drugs, e.g. megestrol acetate, cannabinoids, and ghrelin agonists, have been shown to have some ability to be orexigenic in cancer patients.

Journal ArticleDOI
TL;DR: This review will focus firstly on the interconnected roles of serotonin and neurotrophins in depression and antidepressant therapy, secondly on the impact of the immune system on serotonin transporter regulation and neurotrophic signalling, and finally a model of reciprocal regulation of neurotransmission in the context of inflammation-induced depression is proposed.

Journal ArticleDOI
TL;DR: Granisetron plus dexamethasone was often the most effective antiemetic, with the number needed to treat ranging from two to nine, while placebo resulted in significantly fewer patients with postoperative nausea and vomiting versus placebo.
Abstract: BackgroundSerotonin (5-HT3) receptor antagonists are commonly used to decrease nausea and vomiting for surgery patients. We conducted a systematic review on the comparative efficacy of 5-HT3 receptor antagonists.MethodsSearches were done in MEDLINE, Embase, and the Cochrane Central Register of Controlled Trials to identify studies comparing 5-HT3 receptor antagonists with each other, placebo, and/or combined with other antiemetic agents for patients undergoing surgical procedures. Screening search results, data abstraction, and risk of bias assessment were conducted by two reviewers independently. Random-effects pairwise meta-analysis and network meta-analysis (NMA) were conducted. PROSPERO registry number: CRD42013003564.ResultsOverall, 450 studies and 80,410 patients were included after the screening of 7,608 citations and 1,014 full-text articles. Significantly fewer patients experienced nausea with any drug relative to placebo, except for ondansetron plus metoclopramide in a NMA including 195 RCTs and 24,230 patients. Significantly fewer patients experienced vomiting with any drug relative to placebo except for palonosetron plus dexamethasone in NMA including 238 RCTs and 12,781 patients. All agents resulted in significantly fewer patients with postoperative nausea and vomiting versus placebo in a NMA including 125 RCTs and 16,667 patients.ConclusionsGranisetron plus dexamethasone was often the most effective antiemetic, with the number needed to treat ranging from two to nine.

Journal ArticleDOI
TL;DR: Neurotransmission in SAD is characterized by an overactive presynaptic serotonin system, with increased serotonin synthesis and transporter availability, which could provide important new insights into the etiology of anxiety disorders.
Abstract: IMPORTANCE: Serotonin is involved in negative affect, but whether anxiety syndromes, such as social anxiety disorder (SAD), are characterized by an overactive or underactive serotonin system has not been established. Serotonin 1A autoreceptors, which inhibit serotonin synthesis and release, are downregulated in SAD, and serotonin transporter availability might be increased; however, presynaptic serotonin activity has not been evaluated extensively.OBJECTIVE: To examine the serotonin synthesis rate and serotonin transporter availability in patients with SAD and healthy control individuals using positron emission tomography (PET) with the radioligands 5-hydroxytryptophan labeled with carbon 11 ([11C]5-HTP) and 11C-labeled 3-amino-4-(2-dimethylaminomethylphenylsulfanyl)-benzonitrile [11C]DASB.DESIGN, SETTING, AND PARTICIPANTS: We performed a cross-sectional study at an academic clinical research center. Eighteen patients with SAD (9 men and 9 women; mean [SD] age, 32.6 [8.2] years) and 18 sex- and age-matched healthy controls (9 men and 9 women; mean [SD] age, 34.7 [9.2] years) underwent [11C]5-HTP PET imaging. We acquired [11C]DASB PET images for 26 additional patients with SAD (14 men and 12 women; mean [SD] age, 35.2 [10.7] years) and the same 18 sex- and age-matched healthy controls. Participants were recruited through newspaper advertisements. Data were acquired from March 12, 2002, through March 5, 2012, and analyzed from March 28, 2013, through August 29, 2014.MAIN OUTCOMES AND MEASURES: The influx rate of [11C]5-HTP as a measure of serotonin synthesis rate capacity and [11C]DASB binding potential as an index of serotonin transporter availability were acquired during rest. We used the Liebowitz Social Anxiety Scale to measure severity of social anxiety symptoms.RESULTS: The PET data were not available for analysis in 1 control for each scan. Increased [11C]5-HTP influx rate was observed in the amygdala, raphe nuclei region, caudate nucleus, putamen, hippocampus, and anterior cingulate cortex of patients with SAD compared with healthy controls (P < .05 corrected), supporting an enhanced serotonin synthesis rate. Increased serotonin transporter availability in the patients with SAD relative to healthy controls was reflected by elevated [11C]DASB binding potential in the raphe nuclei region, caudate nucleus, putamen, thalamus, and insula cortex (P < .05 corrected).CONCLUSIONS AND RELEVANCE: Neurotransmission in SAD is characterized by an overactive presynaptic serotonin system, with increased serotonin synthesis and transporter availability. Our findings could provide important new insights into the etiology of anxiety disorders.

Journal ArticleDOI
TL;DR: This review will summarize the data gained from the existing mouse models with constitutive or conditional deletion of the Tph2 gene, focusing on biochemical, developmental, and behavioral consequences of Tph1-deficiency.

Journal ArticleDOI
TL;DR: Various approaches targeting the different components of the serotonergic system have been employed to restore limb coordination and improve locomotor function in experimental models of SCI.
Abstract: Serotonin (5-HT), a monoamine neurotransmitter synthesized in various populations of brainstem neurons, plays an important role in modulating the activity of spinal networks involved in vertebrate locomotion. Following spinal cord injury (SCI) there is a disruption of descending serotonergic projections to spinal motor areas, which results in a subsequent depletion in 5-HT, the dysregulation of serotonin transporters as well as the elevated expression, super-sensitivity and/or constitutive auto-activation of specific serotonin receptors. These changes in the serotonergic system can produce varying degrees of locomotor dysfunction through to paralysis. To date, various approaches targeting the different components of the serotonergic system have been employed to restore limb coordination and improve locomotor function in experimental models of SCI. These strategies have included pharmacological modulation of serotonergic receptors, through the administration of specific 5-HT receptor agonists, or by elevating the serotonin precursor 5-hydroxytryptophan, which produces a global activation of all classes of 5-HT receptors. Stimulation of these receptors leads to the activation of the locomotor central pattern generator (CPG) below the site of injury to facilitate or improve the quality and frequency of movements, particularly when used in concert with the activation of other monoaminergic systems or coupled with electrical stimulation. Another approach has been to employ cell therapeutics to replace the loss of descending serotonergic input to the CPG, either through transplanted fetal brainstem 5-HT neurons at the site of injury that can supply 5-HT to below the level of the lesion or by other cell types to provide a substrate at the lesion for encouraging serotonergic axon regrowth across the lesion to the caudal spinal cord for restoring locomotion.

Journal ArticleDOI
TL;DR: The functional significance of serotonin in the teleosts reproduction is summarized and selective serotonin reuptake inhibitors (SSRIs) are commonly detected as pharmaceutical contaminants in the natural environment.
Abstract: The neuroendocrine mechanism regulates reproduction through the hypothalamo-pituitary-gonadal (HPG) axis which is evolutionarily conserved in vertebrates. The HPG axis is regulated by a variety of internal as well as external factors. Serotonin, a monoamine neurotransmitter, is involved in a wide range of reproductive functions. In mammals, serotonin regulates sexual behaviors, gonadotropin release and gonadotropin-release hormone (GnRH) secretion. However, the serotonin system in teleost may also play unique role in the control of reproduction as the mechanism of reproductive control in teleosts is not always the same as in the mammalian models. In fish, the serotonin system is also regulated by natural environmental factors as well as chemical substances. In particular, selective serotonin reuptake inhibitors (SSRIs) are commonly detected as pharmaceutical contaminants in the natural environment. Those factors may influence fish reproductive functions via the serotonin system. This review summarizes the functional significance of serotonin in the teleosts reproduction.

Journal ArticleDOI
TL;DR: Activation of 5-HT3 receptors may modulate the excitability and activity of gastrointestinal vagal afferents at multiple sites and may be involved in several physiological and pathophysiological conditions, including distention- and chemical-evoked vagal reflexes, nausea, and vomiting, as well as visceral hypersensitivity.
Abstract: Vagal neurocircuits are vitally important in the co-ordination and modulation of GI reflexes and homeostatic functions. 5-hydroxytryptamine (5-HT; serotonin) is critically important in the regulation of several of these autonomic gastrointestinal (GI) functions including motility, secretion and visceral sensitivity. While several 5-HT receptors are involved in these physiological responses, the ligand-gated 5-HT3 receptor appears intimately involved in gut-brain signaling, particularly via the afferent (sensory) vagus nerve. 5-HT is released from enterochromaffin cells in response to mechanical or chemical stimulation of the GI tract which leads to activation of 5-HT3 receptors on the terminals of vagal afferents. 5-HT3 receptors are also present on the soma of vagal afferent neurons, including GI vagal afferent neurons, where they can be activated by circulating 5-HT. The central terminals of vagal afferents also exhibit 5-HT3 receptors that function to increase glutamatergic synaptic transmission to second order neurons of the nucleus tractus solitarius within the brainstem. While activation of central brainstem 5-HT3 receptors modulates visceral functions, it is still unclear whether central vagal neurons, i.e., nucleus of the tractus solitarius (NTS) and dorsal motor nucleus of the vagus (DMV) neurons themselves also display functional 5-HT3 receptors. Thus, activation of 5-HT3 receptors may modulate the excitability and activity of gastrointestinal vagal afferents at multiple sites and may be involved in several physiological and pathophysiological conditions, including distention- and chemical-evoked vagal reflexes, nausea, and vomiting, as well as visceral hypersensitivity.

Journal ArticleDOI
TL;DR: It is suggested that moderate release of 5-HT facilitates locomotion and promotes the excitability of motoneurons, while stronger release inhibits rhythmic activity and motoneuron firing.

Journal ArticleDOI
TL;DR: The aim of the present study was to pharmacologically characterize benzofurans in vitro to characterize the pharmacology of these newly used psychoactive substances.
Abstract: Background and Purpose Benzofurans are newly used psychoactive substances, but their pharmacology is unknown. The aim of the present study was to pharmacologically characterize benzofurans in vitro. Experimental Approach We assessed the effects of the benzofurans 5-APB, 5-APDB, 6-APB, 6-APDB, 4-APB, 7-APB, 5-EAPB and 5-MAPDB and benzodifuran 2C-B-FLY on the human noradrenaline (NA), dopamine and 5-HT uptake transporters using HEK 293 cells that express the respective transporters. We also investigated the release of NA, dopamine and 5-HT from monoamine-preloaded cells, monoamine receptor-binding affinity and 5-HT2A and 5-HT2B receptor activation. Key Results All of the benzofurans inhibited NA and 5-HT uptake more than dopamine uptake, similar to methylenedioxymethamphetamine (MDMA) and unlike methamphetamine. All of the benzofurans also released monoamines and interacted with trace amine-associated receptor 1 (TA1 receptor), similar to classic amphetamines. Most benzofurans were partial 5-HT2A receptor agonists similar to MDMA, but also 5-HT2B receptor agonists, unlike MDMA and methamphetamine. The benzodifuran 2C-B-FLY very potently interacted with 5-HT2 receptors and also bound to TA1 receptors. Conclusions and Implications Despite very similar structures, differences were found in the pharmacological profiles of different benzofurans and compared with their amphetamine analogues. Benzofurans acted as indirect monoamine agonists that interact with transporters similarly to MDMA. The benzofurans also interacted with 5-HT receptors. This pharmacological profile probably results in MDMA-like entactogenic psychoactive properties. However, benzofurans induce 5-HT2B receptor activation associated with heart valve fibrosis. The pharmacology of 2C-B-FLY indicates predominant hallucinogenic properties and a risk for vasoconstriction.

Journal ArticleDOI
TL;DR: CSF miR-16 participated in the physiopathology of MDD via the modulation of serotonin transmitter system in brain and was negatively correlated with Hamilton scores and positively associated with CSF serotonin.

Journal ArticleDOI
TL;DR: It is demonstrated that IL6 directly controls SERT levels and consequently serotonin reuptake and identifies STAT3-dependent regulation of SERT as conceivable neurobiological substrate for the involvement of IL6 in depression.
Abstract: Experimental evidence suggests a role for the immune system in the pathophysiology of depression. A specific involvement of the proinflammatory cytokine interleukin 6 (IL6) in both, patients suffering from the disease and pertinent animal models, has been proposed. However, it is not clear how IL6 impinges on neurotransmission and thus contributes to depression. Here we tested the hypothesis that IL6-induced modulation of serotonergic neurotransmission through the STAT3 signaling pathway contributes to the role of IL6 in depression. Addition of IL6 to JAR cells, endogenously expressing SERT, reduced SERT activity and downregulated SERT mRNA and protein levels. Similarly, SERT expression was reduced upon IL6 treatment in the mouse hippocampus. Conversely, hippocampal tissue of IL6-KO mice contained elevated levels of SERT and IL6-KO mice displayed a reduction in depression-like behavior and blunted response to acute antidepressant treatment. STAT3 IL6-dependently associated with the SERT promoter and inhibition of STAT3 blocked the effect of IL6 in-vitro and modulated depression-like behavior in-vivo. These observations demonstrate that IL6 directly controls SERT levels and consequently serotonin reuptake and identify STAT3-dependent regulation of SERT as conceivable neurobiological substrate for the involvement of IL6 in depression.