scispace - formally typeset
Topic

Service-level agreement

About: Service-level agreement is a(n) research topic. Over the lifetime, 4358 publication(s) have been published within this topic receiving 75333 citation(s). The topic is also known as: SLA.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper defines Cloud computing and provides the architecture for creating Clouds with market-oriented resource allocation by leveraging technologies such as Virtual Machines (VMs), and provides insights on market-based resource management strategies that encompass both customer-driven service management and computational risk management to sustain Service Level Agreement (SLA) oriented resource allocation.
Abstract: With the significant advances in Information and Communications Technology (ICT) over the last half century, there is an increasingly perceived vision that computing will one day be the 5th utility (after water, electricity, gas, and telephony). This computing utility, like all other four existing utilities, will provide the basic level of computing service that is considered essential to meet the everyday needs of the general community. To deliver this vision, a number of computing paradigms have been proposed, of which the latest one is known as Cloud computing. Hence, in this paper, we define Cloud computing and provide the architecture for creating Clouds with market-oriented resource allocation by leveraging technologies such as Virtual Machines (VMs). We also provide insights on market-based resource management strategies that encompass both customer-driven service management and computational risk management to sustain Service Level Agreement (SLA)-oriented resource allocation. In addition, we reveal our early thoughts on interconnecting Clouds for dynamically creating global Cloud exchanges and markets. Then, we present some representative Cloud platforms, especially those developed in industries, along with our current work towards realizing market-oriented resource allocation of Clouds as realized in Aneka enterprise Cloud technology. Furthermore, we highlight the difference between High Performance Computing (HPC) workload and Internet-based services workload. We also describe a meta-negotiation infrastructure to establish global Cloud exchanges and markets, and illustrate a case study of harnessing 'Storage Clouds' for high performance content delivery. Finally, we conclude with the need for convergence of competing IT paradigms to deliver our 21st century vision.

5,544 citations

Journal ArticleDOI
TL;DR: A competitive analysis is conducted and competitive ratios of optimal online deterministic algorithms for the single VM migration and dynamic VM consolidation problems are proved, and novel adaptive heuristics for dynamic consolidation of VMs are proposed based on an analysis of historical data from the resource usage by VMs.
Abstract: The rapid growth in demand for computational power driven by modern service applications combined with the shift to the Cloud computing model have led to the establishment of large-scale virtualized data centers. Such data centers consume enormous amounts of electrical energy resulting in high operating costs and carbon dioxide emissions. Dynamic consolidation of virtual machines (VMs) using live migration and switching idle nodes to the sleep mode allows Cloud providers to optimize resource usage and reduce energy consumption. However, the obligation of providing high quality of service to customers leads to the necessity in dealing with the energy-performance trade-off, as aggressive consolidation may lead to performance degradation. Because of the variability of workloads experienced by modern applications, the VM placement should be optimized continuously in an online manner. To understand the implications of the online nature of the problem, we conduct a competitive analysis and prove competitive ratios of optimal online deterministic algorithms for the single VM migration and dynamic VM consolidation problems. Furthermore, we propose novel adaptive heuristics for dynamic consolidation of VMs based on an analysis of historical data from the resource usage by VMs. The proposed algorithms significantly reduce energy consumption, while ensuring a high level of adherence to the service level agreement. We validate the high efficiency of the proposed algorithms by extensive simulations using real-world workload traces from more than a thousand PlanetLab VMs. Copyright © 2011 John Wiley & Sons, Ltd.

1,372 citations

Journal ArticleDOI
Alexander Keller1, Heiko Ludwig1
TL;DR: A novel framework for specifying and monitoring Service Level Agreements (SLA) for Web Services, designed for a Web Services environment, that is applicable as well to any inter-domain management scenario, such as business process and service management, or the management of networks, systems and applications in general.
Abstract: We describe a novel framework for specifying and monitoring Service Level Agreements (SLA) for Web Services. SLA monitoring and enforcement become increasingly important in a Web Service environment where enterprise applications and services rely on services that may be subscribed dynamically and on-demand. For economic and practical reasons, we want an automated provisioning process for both the service itself as well as the SLA managment system that measures and monitors the QoS parameters, checks the agreed-upon service levels, and reports violations to the authorized parties involved in the SLA management process. Our approach to these issues is presented in this paper. The Web Service Level Agreement (WSLA) framework is targeted at defining and monitoring SLAs for Web Services. Although WSLA has been designed for a Web Services environment, it is applicable as well to any inter-domain management scenario, such as business process and service management, or the management of networks, systems and applications in general. The WSLA framework consists of a flexible and extensible language based on XML Schema and a runtime architecture comprising several SLA monitoring services, which may be outsourced to third parties to ensure a maximum of objectivity. WSLA enables service customers and providers to unambiguously define a wide variety of SLAs, specify the SLA parameters and the way they are measured, and relate them to managed resource instrumentations. Upon receipt of an SLA specification, the WSLA monitoring services are automatically configured to enforce the SLA. An implementation of the WSLA framework, termed SLA Compliance Monitor, is publicly available as part of the IBM Web Services Toolkit.

1,018 citations

Proceedings ArticleDOI
01 Dec 2008
TL;DR: This work investigates the design, implementation, and evaluation of a power-aware application placement controller in the context of an environment with heterogeneous virtualized server clusters, and presents the pMapper architecture and placement algorithms to solve one practical formulation of the problem: minimizing power subject to a fixed performance requirement.
Abstract: Workload placement on servers has been traditionally driven by mainly performance objectives. In this work, we investigate the design, implementation, and evaluation of a power-aware application placement controller in the context of an environment with heterogeneous virtualized server clusters. The placement component of the application management middleware takes into account the power and migration costs in addition to the performance benefit while placing the application containers on the physical servers. The contribution of this work is two-fold: first, we present multiple ways to capture the cost-aware application placement problem that may be applied to various settings. For each formulation, we provide details on the kind of information required to solve the problems, the model assumptions, and the practicality of the assumptions on real servers. In the second part of our study, we present the pMapper architecture and placement algorithms to solve one practical formulation of the problem: minimizing power subject to a fixed performance requirement. We present comprehensive theoretical and experimental evidence to establish the efficacy of pMapper.

918 citations

Proceedings ArticleDOI
25 Jun 2007
TL;DR: A dynamic server migration and consolidation algorithm is introduced and is shown to provide substantial improvement over static server consolidation in reducing the amount of required capacity and the rate of service level agreement violations.
Abstract: A dynamic server migration and consolidation algorithm is introduced. The algorithm is shown to provide substantial improvement over static server consolidation in reducing the amount of required capacity and the rate of service level agreement violations. Benefits accrue for workloads that are variable and can be forecast over intervals shorter than the time scale of demand variability. The management algorithm reduces the amount of physical capacity required to support a specified rate of SLA violations for a given workload by as much as 50% as compared to static consolidation approach. Another result is that the rate of SLA violations at fixed capacity may be reduced by up to 20%. The results are based on hundreds of production workload traces across a variety of operating systems, applications, and industries.

876 citations

Network Information
Related Topics (5)
Server
79.5K papers, 1.4M citations
92% related
Network packet
159.7K papers, 2.2M citations
88% related
Wireless network
122.5K papers, 2.1M citations
88% related
Wireless sensor network
142K papers, 2.4M citations
88% related
Scheduling (computing)
78.6K papers, 1.3M citations
87% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20224
2021183
2020233
2019237
2018255
2017266