Topic

# Servomechanism

About: Servomechanism is a research topic. Over the lifetime, 10971 publications have been published within this topic receiving 98179 citations. The topic is also known as: servo.

##### Papers published on a yearly basis

##### Papers

More filters

••

TL;DR: In this paper, it was shown that there is a robust controller for a linear, time-invariant, multivariable system (plant) that asymptotic tracking/regulation occurs independent of input disturbances and arbitrary perturbations in the plant parameters of the system.

Abstract: Necessary and sufficient conditions are found for there to exist a robust controller for a linear, time-invariant, multivariable system (plant) so that asymptotic tracking/regulation occurs independent of input disturbances and arbitrary perturbations in the plant parameters of the system. In this problem, the class of plant parameter perturbations allowed is quite large; in particular, any perturbations in the plant data are allowed as long as the resultant closed-loop system remains stable. A complete characterization of all such robust controllers is made. It is shown that any robust controller must consist of two devices 1) a servocompensator and 2) a stabilizing compensator. The servocompensator is a feedback compensator with error input consisting of a number of unstable subsystems (equal to the number of outputs to be regulated) with identical dynamics which depend on the disturbances and reference inputs to the system. The sorvocompensator is a compensator in its own right, quite distinct from an observer and corresponds to a generalization of the integral controller of classical control theory. The sole purpose of the stabilizing compensator is to stabilize the resultant system obtained by applying the servocompensator to the plant. It is shown that there exists a robust controller for "almost all" systems provided that the number of independent plant inputs is not less than the number of independent plant outputs to be regulated, and that the outputs to be regulated are contained in the measurable outputs of the system; if either of these two conditions is not satisfied, there exists no robust controller for the system.

1,199 citations

••

01 Sep 1953TL;DR: A study of the topological properties of such graphs leads to techniques which have proven useful, both for the discussion of the general theory of feedback and for the solution of practical analysis problems.

Abstract: The equations characterizing a systems problem may be expressed as a network of directed branches. (The block diagram of a servomechanism is a familiar example.) A study of the topological properties of such graphs leads to techniques which have proven useful, both for the discussion of the general theory of feedback and for the solution of practical analysis problems.

680 citations

••

01 Oct 1996TL;DR: This paper presents a complete design methodology for Cartesian position based visual servo control for robots with a single camera mounted at the end-effector and the implementation using a distributed computer architecture is described.

Abstract: This paper presents a complete design methodology for Cartesian position based visual servo control for robots with a single camera mounted at the end-effector. Position based visual servo control requires the explicit calculation of the relative position and orientation (POSE) of the workpiece object with respect to the camera. This is accomplished using image plane measurements of a number of known feature points on the object, and then applying an extended Kalman filter to obtain a recursive solution of the photogrammetric equations, and to properly combine redundant measurements. The control is then designed by specifying the desired trajectories with respect to the object and forming the control error in the end-effector frame. The implementation using a distributed computer architecture is described. An experimental system has been built and used to evaluate the performance of the POSE estimation and the position based visual servo control. Several results for relative trajectory control and target tracking are presented. Results of the experiments showing the effect of loss of some of the redundant features are also presented.

626 citations

••

TL;DR: The proposed controller theoretically guarantees a prescribed tracking transient performance and final tracking accuracy, while achieving asymptotic tracking performance in the absence of time-varying uncertainties, which is very important for high-accuracy tracking control of hydraulic servo systems.

Abstract: In this paper, an output feedback nonlinear control is proposed for a hydraulic system with mismatched modeling uncertainties in which an extended state observer (ESO) and a nonlinear robust controller are synthesized via the backstepping method. The ESO is designed to estimate not only the unmeasured system states but also the modeling uncertainties. The nonlinear robust controller is designed to stabilize the closed-loop system. The proposed controller accounts for not only the nonlinearities (e.g., nonlinear flow features of servovalve), but also the modeling uncertainties (e.g., parameter derivations and unmodeled dynamics). Furthermore, the controller theoretically guarantees a prescribed tracking transient performance and final tracking accuracy, while achieving asymptotic tracking performance in the absence of time-varying uncertainties, which is very important for high-accuracy tracking control of hydraulic servo systems. Extensive comparative experimental results are obtained to verify the high-performance nature of the proposed control strategy.

586 citations

••

TL;DR: The speed regulation problem for permanent magnet synchronous motor (PMSM) servo system is studied and an improved PFC method, called the PFC+ESO method, is developed, which introduces extended state observer (ESO) to estimate the lumped disturbances and adds a feedforward compensation item based on the estimated disturbances to the P FC speed controller.

Abstract: The speed regulation problem for permanent magnet synchronous motor (PMSM) servo system is studied in this paper. In order to optimize the control performance of the PMSM servo system, the predictive functional control (PFC) method is introduced in the control design of speed loop. The PFC-based speed control design consists of two steps. A simplified model is employed to predict the future q -axis current of PMSM. Then, an optimal control law is obtained by minimizing a quadratic performance index. However, it is noted that the standard PFC method does not achieve a satisfying effect in the presence of strong disturbances. To this end, an improved PFC method, called the PFC+ESO method, is developed. It introduces extended state observer (ESO) to estimate the lumped disturbances and adds a feedforward compensation item based on the estimated disturbances to the PFC speed controller. Simulation and experiment comparisons are made for these PFC methods and proportional-integral method with antiwindup control method to verify the effectiveness of the proposed methods.

569 citations