scispace - formally typeset
Search or ask a question
Topic

Sessile drop technique

About: Sessile drop technique is a research topic. Over the lifetime, 2827 publications have been published within this topic receiving 68943 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, ZnO-SnO2 composite films were spin-coated and annealed at different temperatures and the characteristics of the films were studied by using XRD, FESEM, AFM, FT-IR and UV-Vis spectroscopy.

21 citations

Journal ArticleDOI
TL;DR: In this paper, the authors measured the transfer of soda-lime glass on two types of stainless steel as well as on platinum and vitreous carbon substrates in a neutral gas atmosphere between 860 and 1200degreesC.
Abstract: Wetting and sticking of soda-lime glass on two types of stainless steel as well as on platinum and vitreous carbon substrates are studied in a neutral gas atmosphere between 860 and 1200degreesC. Wetting is measured by the "transferred drop" version of the sessile drop technique, enabling fully isothermal spreading kinetics to be monitored. Sticking is investigated by measuring the temperature of glass drop detachment from the substrate during cooling below the vitreous transition temperature. Characterization of substrate and glass surfaces after separation is carried out using surface profilometry, atomic-force microscopy (AFM) and scanning electron microscopy (SEM) with energy-dispersive X-ray (EDX) spectroscopy. The character of molten glass wetting on metal (reactive or non-reactive) and the type of interactions ensuring ultimate wetting and adhesion (physical or chemical) are identified and discussed. The factors controlling glass spreading kinetics and those governing glass/steel sticking are also evidenced. (C) 2004 Elsevier B.V. All rights reserved.

21 citations

Journal ArticleDOI
TL;DR: The surface tension of liquid Fe-Cr-O alloys has been determined by using the sessile drop method at 1823 K as discussed by the authors, and the surface tension is shown to decrease with increasing chromium content.
Abstract: The surface tension of liquid Fe-Cr-O alloys has been determined by using the sessile drop method at 1823 K. It was found that the surface tension of liquid Fe-Cr-O alloy markedly decreases with oxygen content at constant chromium content, and the surface tension at a given oxygen content remains almost constant, regardless of the chromium content. When the surface tension of liquid Fe-Cr-O alloys is plotted as a function of oxygen activity, with an increase in the chromium content, the surface tension shows a much steeper decrease with respect to oxygen activity. The surface tension of liquid Fe-Cr-O alloys at 1823 K is given as follows: σ=1842-279 ln (1+K O a O). Here, assuming a Langmuir-type adsorption isotherm, the adsorption coefficient of oxygen, K O(Fe-Cr), as a function of chromium content, was shown to be K O=140+4.2 × [wt pct Cr]+1.14 × [wt pct Cr]2.

21 citations

Journal ArticleDOI
TL;DR: In this paper, the wettability of fluid-solid interactions of interest for oscillating heat pipe (OHP) applications was investigated using two techniques: the sessile drop method and capillary rise at a vertical plate.
Abstract: This study investigates the wettability of fluid-solid interactions of interest for oscillating heat pipe (OHP) applications. Measurements were taken using two techniques: the sessile drop method and capillary rise at a vertical plate. Tested surface materials include copper, aluminum, and Teflon PFA. The working fluids tested were water, acetone, R-134a, and HFO-1234yf. A novel low-pressure experimental setup was developed for refrigerant testing. Results show that the refrigerants have significantly lower hysteresis than the water and acetone-based systems, which is thought to lead to better heat transfer in OHP design.

21 citations


Network Information
Related Topics (5)
Coating
379.8K papers, 3.1M citations
83% related
Oxide
213.4K papers, 3.6M citations
82% related
Nanoparticle
85.9K papers, 2.6M citations
81% related
Carbon nanotube
109K papers, 3.6M citations
81% related
Adsorption
226.4K papers, 5.9M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202354
2022106
202189
2020105
2019100
2018116