scispace - formally typeset
Search or ask a question
Topic

Sessile drop technique

About: Sessile drop technique is a research topic. Over the lifetime, 2827 publications have been published within this topic receiving 68943 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The wettability and the surface energy of a crystalline organic solid, such as aspirin, was found to be anisotropic and facet dependant, and in this case, related to the presence of surface carboxylic functionalities.

66 citations

Journal ArticleDOI
TL;DR: In this paper, the isothermal spreading of liquid Sn on Au substrates was studied over the temperature range of 250-430 °C using the sessile drop technique in a gaseous flux atmosphere.

66 citations

Journal ArticleDOI
TL;DR: In this article, the effects of HPDL radiation on the wettability and adhesion characteristics of certain ceramic materials have been determined using a 60 W high power diode laser.

66 citations

Journal ArticleDOI
TL;DR: In this article, the surface tension of high purity and commercial purity aluminum in vacuo was determined using the sessile drop method and the results were found to compare favorably with published data.
Abstract: The surface tension of high purity and commercial purity aluminum in vacuo was determined using the sessile drop method and the results were found to compare favorably with published data. The effects of holding atmosphere, substrate, and “surface fracture” of the sessile drop on the measured surface tension values were investigated together with the effects of different solute elements commonly present in commercial aluminum alloys. The results obtained suggest that the nature of the surface oxide film formed on the droplets (affected by alloy composition and atmosphere) and the rupture of this film are the dominant factors influencing the surface tension values obtained. Changes in surface tension values of up to 60 pct were observed. The possible effect of this variable surface tension on practical casting processes, such as direct chill casting, is suggested.

65 citations

Journal ArticleDOI
TL;DR: In this article, the authors used Gibbsian surface thermodynamics to provide a physical understanding for the case where the droplet is thermodynamically favored to nucleate heterogeneously.
Abstract: When a vapor phase is in contact with a solid or nonvolatile fluid, under conditions where the vapor is thermodynamically metastable to condensation, a droplet may nucleate from the vapor either homogenously within the vapor phase, or heterogeneously at the solid or fluid substrate interface. The case where the droplet is thermodynamically favored to nucleate heterogeneously is the subject of this article. The heterogeneous nucleation of a sessile drop on a soft surface has been studied many times experimentally and theoretically. It has been observed experimentally that heterogeneous nucleation happens faster on a soft surface in comparison with a rigid surface. Here we use Gibbsian surface thermodynamics to provide a physical understanding for this observation. Due to the difficulties of considering soft-elastic surfaces, we demonstrate that by considering only the fluidity of a surface (i.e., by considering a fluid surface as an infinitely soft material and comparing a fluid surface with a rigid surface), thermodynamics will predict that heterogeneous nucleation is easier on soft surfaces compared with rigid surfaces. We first investigate the effect of contact angle on the barrier for heterogeneous nucleation on rigid substrates at constant vapor phase pressure. Then we find a lower energy barrier for heterogeneous nucleation at a fluid surface in comparison with heterogeneous nucleation at a rigid surface which explains the faster nucleation on soft surfaces compared with rigid surfaces. Finally we inspect the role of each contribution to the energy barrier.

65 citations


Network Information
Related Topics (5)
Coating
379.8K papers, 3.1M citations
83% related
Oxide
213.4K papers, 3.6M citations
82% related
Nanoparticle
85.9K papers, 2.6M citations
81% related
Carbon nanotube
109K papers, 3.6M citations
81% related
Adsorption
226.4K papers, 5.9M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202354
2022106
202189
2020105
2019100
2018116