scispace - formally typeset
Search or ask a question
Topic

Severe weather

About: Severe weather is a research topic. Over the lifetime, 1812 publications have been published within this topic receiving 42211 citations.


Papers
More filters
Book
01 Jan 1971
TL;DR: This article reviewed the principles of Doppler radar and emphasized the quantitative measurement of meteorological parameters, and illustrated the relation of radar data and images to atmospheric phenomena such as tornadoes, microbursts, waves, turbulence, density currents, hurricanes, and lightning.
Abstract: This book reviews the principles of Doppler radar and emphasizes the quantitative measurement of meteorological parameters. It illustrates the relation of Doppler radar data and images to atmospheric phenomena such as tornadoes, microbursts, waves, turbulence, density currents, hurricanes, and lightning. Geared toward upper-level undergraduates and graduate students, this text was written by two scientists at the National Severe Storms Laboratory in Norman, Oklahoma, a division of the National Oceanic and Atmospheric Administration. Topics include electromagnetic waves and propagation, weather signals and their Doppler spectra, weather signal processing, measurements of precipitation and turbulence, and observations of winds and storms as well as fair weather. Radar images and photographs of weather phenomena highlight the text.

2,178 citations

Journal ArticleDOI
22 Jan 2010-Science
TL;DR: The authors explored the influence of future global warming on Atlantic hurricanes with a downscaling strategy by using an operational hurricane-prediction model that produces a realistic distribution of intense hurricane activity for present-day conditions.
Abstract: Several recent models suggest that the frequency of Atlantic tropical cyclones could decrease as the climate warms. However, these models are unable to reproduce storms of category 3 or higher intensity. We explored the influence of future global warming on Atlantic hurricanes with a downscaling strategy by using an operational hurricane-prediction model that produces a realistic distribution of intense hurricane activity for present-day conditions. The model projects nearly a doubling of the frequency of category 4 and 5 storms by the end of the 21st century, despite a decrease in the overall frequency of tropical cyclones, when the downscaling is based on the ensemble mean of 18 global climate-change projections. The largest increase is projected to occur in the Western Atlantic, north of 20°N.

897 citations

Journal ArticleDOI
TL;DR: In this article, the authors examined all of the 0000 UTC soundings from the United States made during the year 1992 that have nonzero convective available potential energy (CAPE) and classified them as nonsupercell thunderstorms, supercells without significant tornadoes, and supercells with significant hurricanes.
Abstract: All of the 0000 UTC soundings from the United States made during the year 1992 that have nonzero convective available potential energy (CAPE) are examined. Soundings are classified as being associated with nonsupercell thunderstorms, supercells without significant tornadoes, and supercells with significant tornadoes. This classification is made by attempting to pair, based on the low-level sounding winds, an upstream sounding with each occurrence of a significant tornado, large hail, and/or 10 or more cloud-to-ground lightning flashes. Severe weather wind parameters (mean shear, 0–6-km shear, storm-relative helicity, and storm-relative anvil-level flow) and CAPE parameters (total CAPE and CAPE in the lowest 3000 m with buoyancy) are shown to discriminate weakly between the environments of the three classified types of storms. Combined parameters (energy–helicity index and vorticity generation parameter) discriminate strongly between the environments. The height of the lifting condensation level a...

722 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a review of the current knowledge of severe local storms as it relates to the development of new applications for forecasting of local storms. But, they focus on the physical understanding of processes taking place on the storm scale and thus allow forecasters to become less dependent on empirical relationships.
Abstract: Knowledge of severe local storms has been increasing rapidly in recent years as a result of both observational studies and numerical modeling experiments. This paper reviews that knowledge as it relates to development of new applications for forecasting of severe local storms. Many of these new applications are based on physical understanding of processes taking place on the storm scale and thus allow forecasters to become less dependent on empirical relationships. Refinements in pattern recognition and severe weather climatology continue to be of value to the operational severe local storms forecasters, however. Current methodology for forecasting severe local storms at the National Severe Storms Forecast Center is described. Operational uses of new forecast applications, new “real-time” data sources (such as wind profilers and Doppler radars), and improved numerical model products are discussed.

600 citations

Journal ArticleDOI
TL;DR: The National Mosaic and Multi-sensor Quantitative Precipitation Estimation (NMQ) system was initially developed from a joint initiative between the National Oceanic and Atmospheric Administration's National Severe Storms Laboratory, the Federal Aviation Administration's Aviation Weather Research Program, and the Salt River Project.
Abstract: The National Mosaic and Multi-sensor QPE (Quantitative Precipitation Estimation), or “NMQ”, system was initially developed from a joint initiative between the National Oceanic and Atmospheric Administration's National Severe Storms Laboratory, the Federal Aviation Administration's Aviation Weather Research Program, and the Salt River Project. Further development has continued with additional support from the National Weather Service (NWS) Office of Hydrologic Development, the NWS Office of Climate, Water, and Weather Services, and the Central Weather Bureau of Taiwan. The objectives of NMQ research and development (R&D) are 1) to develop a hydrometeorological platform for assimilating different observational networks toward creating high spatial and temporal resolution multisensor QPEs for f lood warnings and water resource management and 2) to develop a seamless high-resolution national 3D grid of radar reflectivity for severe weather detection, data assimilation, numerical weather prediction model verif...

437 citations


Network Information
Related Topics (5)
Climate model
22.2K papers, 1.1M citations
85% related
Sea surface temperature
21.2K papers, 874.7K citations
85% related
Monsoon
16K papers, 599.8K citations
84% related
Precipitation
32.8K papers, 990.4K citations
84% related
Snow
35.1K papers, 709.2K citations
84% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202350
202260
202161
202066
201984
201855