scispace - formally typeset
Search or ask a question
Topic

Shape context

About: Shape context is a research topic. Over the lifetime, 626 publications have been published within this topic receiving 20568 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: This paper presents work on computing shape models that are computationally fast and invariant basic transformations like translation, scaling and rotation, and proposes shape detection using a feature called shape context, which is descriptive of the shape of the object.
Abstract: We present a novel approach to measuring similarity between shapes and exploit it for object recognition. In our framework, the measurement of similarity is preceded by: (1) solving for correspondences between points on the two shapes; (2) using the correspondences to estimate an aligning transform. In order to solve the correspondence problem, we attach a descriptor, the shape context, to each point. The shape context at a reference point captures the distribution of the remaining points relative to it, thus offering a globally discriminative characterization. Corresponding points on two similar shapes will have similar shape contexts, enabling us to solve for correspondences as an optimal assignment problem. Given the point correspondences, we estimate the transformation that best aligns the two shapes; regularized thin-plate splines provide a flexible class of transformation maps for this purpose. The dissimilarity between the two shapes is computed as a sum of matching errors between corresponding points, together with a term measuring the magnitude of the aligning transform. We treat recognition in a nearest-neighbor classification framework as the problem of finding the stored prototype shape that is maximally similar to that in the image. Results are presented for silhouettes, trademarks, handwritten digits, and the COIL data set.

6,693 citations

Book ChapterDOI
11 May 2004
TL;DR: Two new regional shape descriptors are introduced: 3D shape contexts and harmonic shape contexts that outperform the others on cluttered scenes on recognition of vehicles in range scans of scenes using a database of 56 cars.
Abstract: Recognition of three dimensional (3D) objects in noisy and cluttered scenes is a challenging problem in 3D computer vision. One approach that has been successful in past research is the regional shape descriptor. In this paper, we introduce two new regional shape descriptors: 3D shape contexts and harmonic shape contexts. We evaluate the performance of these descriptors on the task of recognizing vehicles in range scans of scenes using a database of 56 cars. We compare the two novel descriptors to an existing descriptor, the spin image, showing that the shape context based descriptors have a higher recognition rate on noisy scenes and that 3D shape contexts outperform the others on cluttered scenes.

919 citations

Proceedings ArticleDOI
20 Jun 2009
TL;DR: This paper proposes a generic approach based on the pictorial structures framework, and demonstrates that such a model is equally suitable for both detection and pose estimation tasks, outperforming the state of the art on three recently proposed datasets.
Abstract: Non-rigid object detection and articulated pose estimation are two related and challenging problems in computer vision. Numerous models have been proposed over the years and often address different special cases, such as pedestrian detection or upper body pose estimation in TV footage. This paper shows that such specialization may not be necessary, and proposes a generic approach based on the pictorial structures framework. We show that the right selection of components for both appearance and spatial modeling is crucial for general applicability and overall performance of the model. The appearance of body parts is modeled using densely sampled shape context descriptors and discriminatively trained AdaBoost classifiers. Furthermore, we interpret the normalized margin of each classifier as likelihood in a generative model. Non-Gaussian relationships between parts are represented as Gaussians in the coordinate system of the joint between parts. The marginal posterior of each part is inferred using belief propagation. We demonstrate that such a model is equally suitable for both detection and pose estimation tasks, outperforming the state of the art on three recently proposed datasets.

848 citations

Proceedings Article
01 Jan 2000
TL;DR: It is demonstrated that shape contexts greatly simplify recovery of correspondences between points of two given shapes, and is used in a nearest-neighbor classifier for recognition of hand written digits as well as 3D objects, using exactly the same distance function.
Abstract: We develop an approach to object recognition based on matching shapes and using a resulting measure of similarity in a nearest neighbor classifier. The key algorithmic problem here is that of finding pointwise correspondences between an image shape and a stored prototype shape. We introduce a new shape descriptor, the shape context, which makes this possible, using a simple and robust algorithm. The shape context at a point captures the distribution over relative positions of other shape points and thus summarizes global shape in a rich, local descriptor. We demonstrate that shape contexts greatly simplify recovery of correspondences between points of two given shapes. Once shapes are aligned, shape contexts are used to define a robust score for measuring shape similarity. We have used this score in a nearest-neighbor classifier for recognition of hand written digits as well as 3D objects, using exactly the same distance function. On the benchmark MNIST dataset of handwritten digits, this yields an error rate of 0.63%, outperforming other published techniques.

611 citations

Journal ArticleDOI
TL;DR: A method is designed, based on intersecting epipolar constraints, for providing ground truth correspondence automatically, which is based purely on geometric information, and does not rely on the choice of a specific feature appearance descriptor.
Abstract: We explore the performance of a number of popular feature detectors and descriptors in matching 3D object features across viewpoints and lighting conditions. To this end we design a method, based on intersecting epipolar constraints, for providing ground truth correspondence automatically. These correspondences are based purely on geometric information, and do not rely on the choice of a specific feature appearance descriptor. We test detector-descriptor combinations on a database of 100 objects viewed from 144 calibrated viewpoints under three different lighting conditions. We find that the combination of Hessian-affine feature finder and SIFT features is most robust to viewpoint change. Harris-affine combined with SIFT and Hessian-affine combined with shape context descriptors were best respectively for lighting change and change in camera focal length. We also find that no detector-descriptor combination performs well with viewpoint changes of more than 25---30?.

497 citations


Network Information
Related Topics (5)
Feature (computer vision)
128.2K papers, 1.7M citations
87% related
Image segmentation
79.6K papers, 1.8M citations
86% related
Feature extraction
111.8K papers, 2.1M citations
86% related
Convolutional neural network
74.7K papers, 2M citations
84% related
Deep learning
79.8K papers, 2.1M citations
81% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
20235
202210
202115
202016
201925
201831