scispace - formally typeset
Search or ask a question
Topic

Shared resource

About: Shared resource is a research topic. Over the lifetime, 7536 publications have been published within this topic receiving 123491 citations. The topic is also known as: network share.


Papers
More filters
Patent
15 Apr 2011
TL;DR: In this article, a system for resource sharing across multi-cloud storage arrays includes a plurality of storage arrays and a cloud array storage (CAS) application, where each storage resource comprises a unique object identifier that identifies location and structure of the corresponding storage resource at a given point-in-time.
Abstract: A system for resource sharing across multi-cloud storage arrays includes a plurality of storage arrays and a cloud array storage (CAS) application. The plurality of storage resources are distributed in one or more cloud storage arrays, and each storage resource comprises a unique object identifier that identifies location and structure of the corresponding storage resource at a given point-in-time. The cloud array storage (CAS) application manages the resource sharing process by first taking an instantaneous copy of initial data stored in a first location of a first storage resource at a given point-in-time and then distributing copies of the instantaneous copy to other storage resources in the one or more cloud storage arrays. The instantaneous copy comprises a first unique object identifier pointing to the first storage location of the initial data in the first storage resource and when the instantaneous copy is distributed to a second storage resource, the first unique object identifier is copied into a second storage location within the second storage resource and the second storage location of the second storage resource is assigned a second unique object identifier.

146 citations

Journal ArticleDOI
Jiaheng Wang1, Daohua Zhu1, Chunming Zhao1, James C. F. Li, Ming Lei 
TL;DR: An analytical characterization of the globally optimal resource sharing strategy is provided, and two suboptimal strategies with less complexity are proposed, demonstrated through numerical examples.
Abstract: The benefit of device-to-device (D2D) communication hinges on intelligent resource sharing between cellular and D2D users. This letter aims to optimize resource sharing for D2D communication to better utilize uplink resources in a multi-user cellular system with guaranteed quality of normal cellular communications. Despite the nonconvex difficulty, we provide an analytical characterization of the globally optimal resource sharing strategy, and furthermore propose two suboptimal strategies with less complexity. The superiority of the proposed resource sharing strategies is demonstrated through numerical examples.

145 citations

Patent
Geng Wu1, Mo-Han Fong
13 Apr 2001
TL;DR: In this paper, the authors discuss the sharing of cellular network components during and after a mobile station handover from a first cellular wireless network (system A) to a second cellular wireless networks (system B), where layer 2/3 call control functions are anchored in a base station controller (BSC) of system A, even after a data communication is handed over from system A to system B.
Abstract: System components of cellular wireless networks are shared during and after a mobile station handover from a first cellular wireless network (system A) to a second cellular wireless network (system B). According to one aspect, layer 2/3 call control functions are anchored in a base station controller (BSC) of system A, even after a data communication is handed over from system A to system B. According to another aspect, a link layer supporting the data communication is anchored in the BSC of system A servicing the data communication. In this case, the BSC of system A interfaces with a serving BTS of system B to service the ongoing data communication. According to still another aspect, the link layer is handed over to system B but the link layer of system B continues to use a link layer transmit buffer of system A that remains in the servicing BSC of system A.

145 citations

PatentDOI
TL;DR: In this article, an advanced telecommunications system is provided for the recognizing of spoken commands over a cellular telephone, satellite telephone, or personal communications network, which includes an administrative subsystem, a call processing subsystem, speaker dependent recognition subsystem, and a speaker independent recognition subsystem.
Abstract: An advanced telecommunications system is provided for the recognizing of spoken commands over a cellular telephone, satellite telephone, or personal communications network. In the cellular application, for example, a Speech Recognition System interconnects either internally with or as an external peripheral to a cellular telecommunications switch. The Speech Recognition System includes an administrative subsystem, a call processing subsystem, a speaker-dependent recognition subsystem, a speaker-independent recognition subsystem, and a data storage subsystem. The Speech Recognition System also allows for increased efficiency in the cellular telephone network by integrating with the switch or switches as a shared resource. The administrative subsystem of the Speech Recognition System is used to keep statistical logs of pertinent call information. Pre-recorded instructional messages are stored in the memory of the call processing subsystem for instructing a user on his or her progress in using the system. The speaker-independent recognition subsystem allows the user to interact with the system employing non-user specific functions. User specific functions are controlled with the speaker-dependent recognition subsystem. User specific attributes collected by the recognition subsystems are stored in the data storage subsystem.

144 citations

Proceedings ArticleDOI
13 Dec 2014
TL;DR: This paper demonstrates through a real- system investigation that the fundamental difference between resource sharing behaviors on CMP and SMT architectures calls for a redesign of the way the authors model interference, and proposes SMiTe, a methodology that enables precise performance prediction for SMT co-location on real-system commodity processors.
Abstract: One of the key challenges for improving efficiency in warehouse scale computers (WSCs) is to improve server utilization while guaranteeing the quality of service (QoS) of latency-sensitive applications. To this end, prior work has proposed techniques to precisely predict performance and QoS interference to identify 'safe' application co-locations. However, such techniques are only applicable to resources shared across cores. Achieving such precise interference prediction on real-system simultaneous multithreading (SMT) architectures has been a significantly challenging open problem due to the complexity introduced by sharing resources within a core. In this paper, we demonstrate through a real-system investigation that the fundamental difference between resource sharing behaviors on CMP and SMT architectures calls for a redesign of the way we model interference. For SMT servers, the interference on different shared resources, including private caches, memory ports, as well as integer and floating-point functional units, do not correlate with each other. This insight suggests the necessity of decoupling interference into multiple resource sharing dimensions. In this work, we propose SMiTe, a methodology that enables precise performance prediction for SMT co-location on real-system commodity processors. With a set of Rulers, which are carefully designed software stressors that apply pressure to a multidimensional space of shared resources, we quantify application sensitivity and contentiousness in a decoupled manner. We then establish a regression model to combine the sensitivity and contentiousness in different dimensions to predict performance interference. Using this methodology, we are able to precisely predict the performance interference in SMT co-location with an average error of 2.80% on SPEC CPU2006 and 1.79% on Cloud Suite. Our evaluation shows that SMiTe allows us to improve the utilization of WSCs by up to 42.57% while enforcing an application's QoS requirements.

141 citations


Network Information
Related Topics (5)
The Internet
213.2K papers, 3.8M citations
84% related
Information system
107.5K papers, 1.8M citations
83% related
Software
130.5K papers, 2M citations
80% related
Network packet
159.7K papers, 2.2M citations
78% related
Wireless network
122.5K papers, 2.1M citations
78% related
Performance
Metrics
No. of papers in the topic in previous years
YearPapers
202381
2022194
2021223
2020298
2019381
2018373